PPRSteg: Printing and Photography Robust QR Code Steganography via Attention Flow-Based Model
- URL: http://arxiv.org/abs/2405.16414v1
- Date: Sun, 26 May 2024 03:16:40 GMT
- Title: PPRSteg: Printing and Photography Robust QR Code Steganography via Attention Flow-Based Model
- Authors: Huayuan Ye, Shenzhuo Zhang, Shiqi Jiang, Jing Liao, Shuhang Gu, Changbo Wang, Chenhui Li,
- Abstract summary: QR Code steganography aims to embed a non-natural image into a natural image and the restored QR Code is required to be recognizable.
We propose a novel framework, called Printing and Photography Robust Steganography (PPRSteg), which is competent to hide QR Code in a host image with unperceivable changes.
- Score: 35.831644960576035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image steganography can hide information in a host image and obtain a stego image that is perceptually indistinguishable from the original one. This technique has tremendous potential in scenarios like copyright protection, information retrospection, etc. Some previous studies have proposed to enhance the robustness of the methods against image disturbances to increase their applicability. However, they generally cannot achieve a satisfying balance between the steganography quality and robustness. In this paper, we focus on the issue of QR Code steganography that is robust to real-world printing and photography. Different from common image steganography, QR Code steganography aims to embed a non-natural image into a natural image and the restored QR Code is required to be recognizable, which increases the difficulty of data concealing and revealing. Inspired by the recent developments in transformer-based vision models, we discover that the tokenized representation of images is naturally suitable for steganography. In this paper, we propose a novel QR Code embedding framework, called Printing and Photography Robust Steganography (PPRSteg), which is competent to hide QR Code in a host image with unperceivable changes and can restore it even if the stego image is printed out and photoed. We outline a transition process to reduce the artifacts in stego images brought by QR Codes. We also propose a steganography model based on normalizing flow, which combines the attention mechanism to enhance its performance. To our best knowledge, this is the first work that integrates the advantages of transformer models into normalizing flow. We conduct comprehensive and detailed experiments to demonstrate the effectiveness of our method and the result shows that PPRSteg has great potential in robust, secure and high-quality QR Code steganography.
Related papers
- DiffStega: Towards Universal Training-Free Coverless Image Steganography with Diffusion Models [38.17146643777956]
Coverless image steganography (CIS) enhances imperceptibility by not using any cover image.
Recent works have utilized text prompts as keys in CIS through diffusion models.
We propose DiffStega, an innovative training-free diffusion-based CIS strategy for universal application.
arXiv Detail & Related papers (2024-07-15T06:15:49Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - PRIS: Practical robust invertible network for image steganography [10.153270845070676]
Image steganography is a technique of hiding secret information inside another image, so that the secret is not visible to human eyes.
Most of the existing image steganography methods have low hiding robustness when the container images affected by distortion.
This paper proposed PRIS to improve the robustness of image steganography, it based on invertible neural networks.
arXiv Detail & Related papers (2023-09-24T12:29:13Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - Image Steganography based on Style Transfer [12.756859984638961]
We propose image steganography network based on style transfer.
We embed secret information while transforming the content image style.
In latent space, the secret information is integrated into the latent representation of the cover image to generate the stego images.
arXiv Detail & Related papers (2022-03-09T02:58:29Z) - DocEnTr: An End-to-End Document Image Enhancement Transformer [13.108797370734893]
Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties.
We present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images.
arXiv Detail & Related papers (2022-01-25T11:45:35Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Designing an Encoder for StyleGAN Image Manipulation [38.909059126878354]
We study the latent space of StyleGAN, the state-of-the-art unconditional generator.
We identify and analyze the existence of a distortion-editability tradeoff and a distortion-perception tradeoff within the StyleGAN latent space.
We present an encoder based on our two principles that is specifically designed for facilitating editing on real images.
arXiv Detail & Related papers (2021-02-04T17:52:38Z) - News Image Steganography: A Novel Architecture Facilitates the Fake News
Identification [52.83247667841588]
A larger portion of fake news quotes untampered images from other sources with ulterior motives.
This paper proposes an architecture named News Image Steganography to reveal the inconsistency through image steganography based on GAN.
arXiv Detail & Related papers (2021-01-03T11:12:23Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images.
The deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images.
arXiv Detail & Related papers (2020-03-30T17:45:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.