Pruning for Robust Concept Erasing in Diffusion Models
- URL: http://arxiv.org/abs/2405.16534v1
- Date: Sun, 26 May 2024 11:42:20 GMT
- Title: Pruning for Robust Concept Erasing in Diffusion Models
- Authors: Tianyun Yang, Juan Cao, Chang Xu,
- Abstract summary: We introduce a new pruning-based strategy for concept erasing.
Our method selectively prunes critical parameters associated with the concepts targeted for removal, thereby reducing the sensitivity of concept-related neurons.
Experimental results show a significant enhancement in our model's ability to resist adversarial inputs.
- Score: 27.67237515704348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the impressive capabilities of generating images, text-to-image diffusion models are susceptible to producing undesirable outputs such as NSFW content and copyrighted artworks. To address this issue, recent studies have focused on fine-tuning model parameters to erase problematic concepts. However, existing methods exhibit a major flaw in robustness, as fine-tuned models often reproduce the undesirable outputs when faced with cleverly crafted prompts. This reveals a fundamental limitation in the current approaches and may raise risks for the deployment of diffusion models in the open world. To address this gap, we locate the concept-correlated neurons and find that these neurons show high sensitivity to adversarial prompts, thus could be deactivated when erasing and reactivated again under attacks. To improve the robustness, we introduce a new pruning-based strategy for concept erasing. Our method selectively prunes critical parameters associated with the concepts targeted for removal, thereby reducing the sensitivity of concept-related neurons. Our method can be easily integrated with existing concept-erasing techniques, offering a robust improvement against adversarial inputs. Experimental results show a significant enhancement in our model's ability to resist adversarial inputs, achieving nearly a 40% improvement in erasing the NSFW content and a 30% improvement in erasing artwork style.
Related papers
- Towards Lifelong Few-Shot Customization of Text-to-Image Diffusion [50.26583654615212]
Lifelong few-shot customization for text-to-image diffusion aims to continually generalize existing models for new tasks with minimal data.
In this study, we identify and categorize the catastrophic forgetting problems into two folds: relevant concepts forgetting and previous concepts forgetting.
Unlike existing methods that rely on additional real data or offline replay of original concept data, our approach enables on-the-fly knowledge distillation to retain the previous concepts while learning new ones.
arXiv Detail & Related papers (2024-11-08T12:58:48Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
We propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images.
Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
arXiv Detail & Related papers (2024-07-17T05:21:41Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - ConceptPrune: Concept Editing in Diffusion Models via Skilled Neuron Pruning [10.201633236997104]
Large-scale text-to-image diffusion models have demonstrated impressive image-generation capabilities.
We present ConceptPrune, wherein we first identify critical regions within pre-trained models responsible for generating undesirable concepts.
Experiments across a range of concepts including artistic styles, nudity, object erasure, and gender debiasing demonstrate that target concepts can be efficiently erased by pruning a tiny fraction.
arXiv Detail & Related papers (2024-05-29T16:19:37Z) - Removing Undesirable Concepts in Text-to-Image Diffusion Models with Learnable Prompts [23.04942433104886]
We propose a novel method to remove undesirable concepts from text-to-image diffusion models by incorporating a learnable prompt into the cross-attention module.
This learnable prompt acts as additional memory, capturing the knowledge of undesirable concepts.
We demonstrate the effectiveness of our method on the Stable Diffusion model, showcasing its superiority over state-of-the-art erasure methods.
arXiv Detail & Related papers (2024-03-18T23:42:04Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - All but One: Surgical Concept Erasing with Model Preservation in
Text-to-Image Diffusion Models [22.60023885544265]
Large-scale datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them.
Fine-tuning algorithms have been developed to tackle concept erasing in diffusion models.
We present a new approach that solves all of these challenges.
arXiv Detail & Related papers (2023-12-20T07:04:33Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
We propose a method called SDD to prevent problematic content generation in text-to-image diffusion models.
Our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality.
arXiv Detail & Related papers (2023-07-12T07:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.