Attaining Human`s Desirable Outcomes in Human-AI Interaction via Structural Causal Games
- URL: http://arxiv.org/abs/2405.16588v1
- Date: Sun, 26 May 2024 14:42:49 GMT
- Title: Attaining Human`s Desirable Outcomes in Human-AI Interaction via Structural Causal Games
- Authors: Anjie Liu, Jianhong Wang, Haoxuan Li, Xu Chen, Jun Wang, Samuel Kaski, Mengyue Yang,
- Abstract summary: In human-AI interaction, a prominent goal is to attain humans desirable outcome with the assistance of AI agents.
We employ a theoretical framework called structural causal game (SCG) to formalize the human-AI interactive process.
We introduce a strategy referred to as pre-policy intervention on the SCG to steer AI agents towards attaining the humans desirable outcome.
- Score: 34.34801907296059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In human-AI interaction, a prominent goal is to attain human`s desirable outcome with the assistance of AI agents, which can be ideally delineated as a problem of seeking the optimal Nash Equilibrium that matches the human`s desirable outcome. However, reaching the outcome is usually challenging due to the existence of multiple Nash Equilibria that are related to the assisting task but do not correspond to the human`s desirable outcome. To tackle this issue, we employ a theoretical framework called structural causal game (SCG) to formalize the human-AI interactive process. Furthermore, we introduce a strategy referred to as pre-policy intervention on the SCG to steer AI agents towards attaining the human`s desirable outcome. In more detail, a pre-policy is learned as a generalized intervention to guide the agents` policy selection, under a transparent and interpretable procedure determined by the SCG. To make the framework practical, we propose a reinforcement learning-like algorithm to search out this pre-policy. The proposed algorithm is tested in both gridworld environments and realistic dialogue scenarios with large language models, demonstrating its adaptability in a broader class of problems and potential effectiveness in real-world situations.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Learning to Assist Humans without Inferring Rewards [65.28156318196397]
We build upon prior work that studies assistance through the lens of empowerment.
An assistive agent aims to maximize the influence of the human's actions.
We prove that these representations estimate a similar notion of empowerment to that studied by prior work.
arXiv Detail & Related papers (2024-11-04T21:31:04Z) - Problem Solving Through Human-AI Preference-Based Cooperation [74.39233146428492]
We propose HAI-Co2, a novel human-AI co-construction framework.
We formalize HAI-Co2 and discuss the difficult open research problems that it faces.
We present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
arXiv Detail & Related papers (2024-08-14T11:06:57Z) - MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention [81.56607128684723]
We introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention.
MereQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions.
It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function.
arXiv Detail & Related papers (2024-06-24T01:51:09Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Reinforcement Learning Interventions on Boundedly Rational Human Agents
in Frictionful Tasks [25.507656595628376]
We introduce a framework in which an AI agent intervenes on the parameters of a Markov Decision Process (MDP) belonging to a boundedly rational human agent.
We show that AI planning with our human models can lead to helpful policies on a wide range of more complex, ground-truth humans.
arXiv Detail & Related papers (2024-01-26T14:59:48Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
We show the relationship between learning and appropriate reliance in an experiment with 100 participants.
This work provides fundamental concepts for analyzing reliance and derives implications for the effective design of human-AI decision-making.
arXiv Detail & Related papers (2023-10-03T14:51:53Z) - Learning Complementary Policies for Human-AI Teams [22.13683008398939]
We propose a framework for a novel human-AI collaboration for selecting advantageous course of action.
Our solution aims to exploit the human-AI complementarity to maximize decision rewards.
arXiv Detail & Related papers (2023-02-06T17:22:18Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
We consider the human-aware task planning problem where a human-robot team is given a shared task with a known objective to achieve.
Recent approaches tackle it by modeling it as a team of independent, rational agents, where the robot plans for both agents' (shared) tasks.
We describe a novel approach to solve such problems, which models and uses execution-time observability conventions.
arXiv Detail & Related papers (2022-10-17T09:21:00Z) - Blessing from Human-AI Interaction: Super Reinforcement Learning in
Confounded Environments [19.944163846660498]
We introduce the paradigm of super reinforcement learning that takes advantage of Human-AI interaction for data driven sequential decision making.
In the decision process with unmeasured confounding, the actions taken by past agents can offer valuable insights into undisclosed information.
We develop several super-policy learning algorithms and systematically study their theoretical properties.
arXiv Detail & Related papers (2022-09-29T16:03:07Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.