gzip Predicts Data-dependent Scaling Laws
- URL: http://arxiv.org/abs/2405.16684v1
- Date: Sun, 26 May 2024 20:33:08 GMT
- Title: gzip Predicts Data-dependent Scaling Laws
- Authors: Rohan Pandey,
- Abstract summary: We generate training datasets of varying complexities by modulating the syntactic properties of a PCFG.
We propose a new data-dependent scaling law for LM's that accounts for the training data's gzip-compressibility.
- Score: 2.5461535398221478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Past work has established scaling laws that predict the performance of a neural language model (LM) as a function of its parameter count and the number of tokens it's trained on, enabling optimal allocation of a fixed compute budget. Are these scaling laws agnostic to training data as some prior work suggests? We generate training datasets of varying complexities by modulating the syntactic properties of a PCFG, finding that 1) scaling laws are sensitive to differences in data complexity and that 2) gzip, a compression algorithm, is an effective predictor of how data complexity impacts scaling properties. We propose a new data-dependent scaling law for LM's that accounts for the training data's gzip-compressibility; its compute-optimal frontier increases in dataset size preference (over parameter count preference) as training data becomes harder to compress.
Related papers
- Compute Optimal Scaling of Skills: Knowledge vs Reasoning [50.76705503978189]
We ask whether compute-optimal scaling behaviour can be skill-dependent.
In particular, we examine knowledge and reasoning-based skills such as knowledge-based QA and code generation.
We conclude with an analysis of how our findings relate to standard compute-optimal scaling using a validation set.
arXiv Detail & Related papers (2025-03-13T05:21:22Z) - LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws [21.053622641336744]
Loss-to-loss scaling laws relate losses across pretraining datasets and downstream tasks.
Our experiments reveal that the pretraining data and tokenizer determine the scaling trend.
arXiv Detail & Related papers (2025-02-17T18:45:25Z) - Scaling Laws for Differentially Private Language Models [53.14592585413073]
Scaling laws have emerged as important components of large language model (LLM) training as they can predict performance gains through scale.
LLMs rely on large, high-quality training datasets, like those sourced from (sometimes sensitive) user data.
Training models on this sensitive user data requires careful privacy protections like differential privacy (DP)
arXiv Detail & Related papers (2025-01-31T06:32:46Z) - Information-Theoretic Foundations for Neural Scaling Laws [20.617552198581024]
We develop information-theoretic foundations for neural scaling laws.
We observe that the optimal relation between data and model size is linear, up to logarithmic factors.
arXiv Detail & Related papers (2024-06-28T02:20:54Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
We introduce a new perspective by investigating scaling behavior for the value of individual data points.
We provide learning theory to support our scaling law, and we observe empirically that it holds across diverse model classes.
Our work represents a first step towards understanding and utilizing scaling properties for the value of individual data points.
arXiv Detail & Related papers (2024-05-30T20:10:24Z) - Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic [99.3682210827572]
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets.
Data curation strategies are typically developed agnostic of the available compute for training.
We introduce neural scaling laws that account for the non-homogeneous nature of web data.
arXiv Detail & Related papers (2024-04-10T17:27:54Z) - Scaling Laws for Sparsely-Connected Foundation Models [70.41266138010657]
We explore the impact of parameter sparsity on the scaling behavior of Transformers trained on massive datasets.
We identify the first scaling law describing the relationship between weight sparsity, number of non-zero parameters, and amount of training data.
arXiv Detail & Related papers (2023-09-15T16:29:27Z) - Scaling Data-Constrained Language Models [137.17302576977346]
We investigate scaling language models in data-constrained regimes.
We find that with constrained data for a fixed compute budget, training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data.
We propose and empirically validate a scaling law for compute optimality that accounts for the decreasing value of repeated tokens and excess parameters.
arXiv Detail & Related papers (2023-05-25T17:18:55Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
We study the effect of varying the architecture and training data quality on the data scaling properties of Neural Machine Translation (NMT)
We find that the data scaling exponents are minimally impacted, suggesting that marginally worse architectures or training data can be compensated for by adding more data.
arXiv Detail & Related papers (2022-02-04T06:53:49Z) - Scaling Laws for Transfer [0.5432984841650929]
We study scaling laws for transfer learning between distributions in an unsupervised, fine-tuning setting.
We find that the effective data transferred is described well in the low data regime by a power-law of parameter count and fine-tuning dataset size.
arXiv Detail & Related papers (2021-02-02T04:07:38Z) - Privacy-Preserving Gaussian Process Regression -- A Modular Approach to
the Application of Homomorphic Encryption [4.1499725848998965]
Homomorphic encryption (FHE) allows data to be computed on whilst encrypted.
Some commonly used machine learning algorithms, such as Gaussian process regression, are poorly suited to FHE.
We show that a modular approach, which applies FHE to only the sensitive steps of a workflow that need protection, allows one party to make predictions on their data.
arXiv Detail & Related papers (2020-01-28T11:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.