NoteLLM-2: Multimodal Large Representation Models for Recommendation
- URL: http://arxiv.org/abs/2405.16789v2
- Date: Tue, 21 Jan 2025 15:40:43 GMT
- Title: NoteLLM-2: Multimodal Large Representation Models for Recommendation
- Authors: Chao Zhang, Haoxin Zhang, Shiwei Wu, Di Wu, Tong Xu, Xiangyu Zhao, Yan Gao, Yao Hu, Enhong Chen,
- Abstract summary: Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.
Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.
We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
- Score: 71.87790090964734
- License:
- Abstract: Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks. However, their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored. While leveraging existing Multimodal Large Language Models (MLLMs) for such tasks is promising, challenges arise due to their delayed release compared to corresponding LLMs and the inefficiency in representation tasks. To address these issues, we propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation. Preliminary experiments revealed that fine-tuned LLMs often neglect image content. To counteract this, we propose NoteLLM-2, a novel framework that enhances visual information. Specifically, we propose two approaches: first, a prompt-based method that segregates visual and textual content, employing a multimodal In-Context Learning strategy to balance focus across modalities; second, a late fusion technique that directly integrates visual information into the final representations. Extensive experiments, both online and offline, demonstrate the effectiveness of our approach. Code is available at https://github.com/Applied-Machine-Learning-Lab/NoteLLM.
Related papers
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.
Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.
We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - D$^2$TV: Dual Knowledge Distillation and Target-oriented Vision Modeling
for Many-to-Many Multimodal Summarization [113.72253589338472]
Many-to-many multimodal summarization (M$3$S) task aims to generate summaries in any language with document inputs in any language and the corresponding image sequence.
We propose a dual knowledge distillation and target-oriented vision modeling framework for the M$3$S task.
arXiv Detail & Related papers (2023-05-22T06:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.