Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs
- URL: http://arxiv.org/abs/2405.17013v3
- Date: Sun, 06 Oct 2024 13:46:47 GMT
- Title: Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs
- Authors: Qi Wu, Yubo Zhao, Yifan Wang, Xinhang Liu, Yu-Wing Tai, Chi-Keung Tang,
- Abstract summary: Motion-Agent is a conversational framework designed for general human motion generation, editing, and understanding.
Motion-Agent employs an open-source pre-trained language model to develop a generative agent, MotionLLM, that bridges the gap between motion and text.
- Score: 67.59291068131438
- License:
- Abstract: While previous approaches to 3D human motion generation have achieved notable success, they often rely on extensive training and are limited to specific tasks. To address these challenges, we introduce Motion-Agent, an efficient conversational framework designed for general human motion generation, editing, and understanding. Motion-Agent employs an open-source pre-trained language model to develop a generative agent, MotionLLM, that bridges the gap between motion and text. This is accomplished by encoding and quantizing motions into discrete tokens that align with the language model's vocabulary. With only 1--3\% of the model's parameters fine-tuned using adapters, MotionLLM delivers performance on par with diffusion models and other transformer-based methods trained from scratch. By integrating MotionLLM with GPT-4 without additional training, Motion-Agent is able to generate highly complex motion sequences through multi-turn conversations, a capability that previous models have struggled to achieve. Motion-Agent supports a wide range of motion-language tasks, offering versatile capabilities for generating and customizing human motion through interactive conversational exchanges. Project page: https://knoxzhao.github.io/Motion-Agent
Related papers
- MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding [76.30210465222218]
MotionGPT-2 is a unified Large Motion-Language Model (LMLMLM)
It supports multimodal control conditions through pre-trained Large Language Models (LLMs)
It is highly adaptable to the challenging 3D holistic motion generation task.
arXiv Detail & Related papers (2024-10-29T05:25:34Z) - Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [83.55301458112672]
Sitcom-Crafter is a system for human motion generation in 3D space.
Central to the function generation modules is our novel 3D scene-aware human-human interaction module.
Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types.
arXiv Detail & Related papers (2024-10-14T17:56:19Z) - MotionChain: Conversational Motion Controllers via Multimodal Prompts [25.181069337771127]
We present MotionChain, a conversational human motion controller to generate continuous and long-term human motion through multimodal prompts.
By leveraging large-scale language, vision-language, and vision-motion data, MotionChain comprehends each instruction in multi-turn conversation and generates human motions followed by these prompts.
arXiv Detail & Related papers (2024-04-02T07:09:29Z) - Move as You Say, Interact as You Can: Language-guided Human Motion Generation with Scene Affordance [48.986552871497]
We introduce a novel two-stage framework that employs scene affordance as an intermediate representation.
By leveraging scene affordance maps, our method overcomes the difficulty in generating human motion under multimodal condition signals.
Our approach consistently outperforms all baselines on established benchmarks, including HumanML3D and HUMANISE.
arXiv Detail & Related papers (2024-03-26T18:41:07Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
Human motion displays a semantic coupling akin to human language, often perceived as a form of body language.
By fusing language data with large-scale motion models, motion-language pre-training can enhance the performance of motion-related tasks.
We propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks.
arXiv Detail & Related papers (2023-06-26T15:53:02Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - TEMOS: Generating diverse human motions from textual descriptions [53.85978336198444]
We address the problem of generating diverse 3D human motions from textual descriptions.
We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data.
We show that TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions.
arXiv Detail & Related papers (2022-04-25T14:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.