Probabilistic Graph Rewiring via Virtual Nodes
- URL: http://arxiv.org/abs/2405.17311v2
- Date: Fri, 7 Jun 2024 12:40:44 GMT
- Title: Probabilistic Graph Rewiring via Virtual Nodes
- Authors: Chendi Qian, Andrei Manolache, Christopher Morris, Mathias Niepert,
- Abstract summary: Message-passing graph neural networks (MPNNs) have emerged as a powerful paradigm for graph-based machine learning.
MPNNs face challenges such as under-reaching and over-squashing, where limited receptive fields and structural bottlenecks hinder information flow in the graph.
Here, we propose implicitly rewired message-passing neural networks (IPR-MPNNs), a novel approach that integrates implicit probabilistic graph rewiring into MPNNs.
- Score: 21.273828055299408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Message-passing graph neural networks (MPNNs) have emerged as a powerful paradigm for graph-based machine learning. Despite their effectiveness, MPNNs face challenges such as under-reaching and over-squashing, where limited receptive fields and structural bottlenecks hinder information flow in the graph. While graph transformers hold promise in addressing these issues, their scalability is limited due to quadratic complexity regarding the number of nodes, rendering them impractical for larger graphs. Here, we propose implicitly rewired message-passing neural networks (IPR-MPNNs), a novel approach that integrates implicit probabilistic graph rewiring into MPNNs. By introducing a small number of virtual nodes, i.e., adding additional nodes to a given graph and connecting them to existing nodes, in a differentiable, end-to-end manner, IPR-MPNNs enable long-distance message propagation, circumventing quadratic complexity. Theoretically, we demonstrate that IPR-MPNNs surpass the expressiveness of traditional MPNNs. Empirically, we validate our approach by showcasing its ability to mitigate under-reaching and over-squashing effects, achieving state-of-the-art performance across multiple graph datasets. Notably, IPR-MPNNs outperform graph transformers while maintaining significantly faster computational efficiency.
Related papers
- Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
We propose Topology Coordinate Neural Network (TCNN) and Directional Virtual Coordinate Neural Network (DVCNN) as novel alternatives to message passing GNNs.
TCNN and DVCNN achieve competitive or superior performance to message passing GNNs.
Our work expands the toolbox of techniques for graph-based machine learning.
arXiv Detail & Related papers (2023-12-03T10:14:10Z) - Probabilistically Rewired Message-Passing Neural Networks [41.554499944141654]
Message-passing graph neural networks (MPNNs) emerged as powerful tools for processing graph-structured input.
MPNNs operate on a fixed input graph structure, ignoring potential noise and missing information.
We devise probabilistically rewired MPNNs (PR-MPNNs) which learn to add relevant edges while omitting less beneficial ones.
arXiv Detail & Related papers (2023-10-03T15:43:59Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
We propose an SNN-based deep generative method, namely the Spiking Variational Graph Auto-Encoders (S-VGAE) for efficient graph representation learning.
We conduct link prediction experiments on multiple benchmark graph datasets, and the results demonstrate that our model consumes significantly lower energy with the performances superior or comparable to other ANN- and SNN-based methods for graph representation learning.
arXiv Detail & Related papers (2022-10-24T12:54:41Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Counting Substructures with Higher-Order Graph Neural Networks:
Possibility and Impossibility Results [58.277290855841976]
We study tradeoffs of computational cost and expressive power of Graph Neural Networks (GNNs)
We show that a new model can count subgraphs of size $k$, and thereby overcomes a known limitation of low-order GNNs.
In several cases, the proposed algorithm can greatly reduce computational complexity compared to the existing higher-order $k$-GNNs.
arXiv Detail & Related papers (2020-12-06T03:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.