Assessing the significance of longitudinal data in Alzheimer's Disease forecasting
- URL: http://arxiv.org/abs/2405.17352v1
- Date: Mon, 27 May 2024 16:55:48 GMT
- Title: Assessing the significance of longitudinal data in Alzheimer's Disease forecasting
- Authors: Batuhan K. Karaman, Mert R. Sabuncu,
- Abstract summary: We employ a transformer encoder model to characterize the significance of longitudinal patient data for forecasting the progression of Alzheimer's Disease (AD)
Our model, Longitudinal Forecasting Model for Alzheimer's Disease (LongForMAD), harnesses the comprehensive temporal information embedded in sequences of patient visits.
Our results support the incorporation of longitudinal data in clinical settings to enhance the early detection and monitoring of AD.
- Score: 7.72135261611709
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we employ a transformer encoder model to characterize the significance of longitudinal patient data for forecasting the progression of Alzheimer's Disease (AD). Our model, Longitudinal Forecasting Model for Alzheimer's Disease (LongForMAD), harnesses the comprehensive temporal information embedded in sequences of patient visits that incorporate multimodal data, providing a deeper understanding of disease progression than can be drawn from single-visit data alone. We present an empirical analysis across two patient groups-Cognitively Normal (CN) and Mild Cognitive Impairment (MCI)-over a span of five follow-up years. Our findings reveal that models incorporating more extended patient histories can outperform those relying solely on present information, suggesting a deeper historical context is critical in enhancing predictive accuracy for future AD progression. Our results support the incorporation of longitudinal data in clinical settings to enhance the early detection and monitoring of AD. Our code is available at \url{https://github.com/batuhankmkaraman/LongForMAD}.
Related papers
- Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD)
We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks.
Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression,
arXiv Detail & Related papers (2024-09-18T16:03:57Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals.
We propose a conditional score-based diffusion model to generate CTh trajectories with the given baseline information.
Our model has a near-zero bias with narrow confidential 95% interval compared to the ground-truth CTh in 6-36 months.
arXiv Detail & Related papers (2024-03-11T17:26:18Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - TA-RNN: an Attention-based Time-aware Recurrent Neural Network Architecture for Electronic Health Records [0.0]
Deep learning methods such as Recurrent Neural Networks (RNN) have been utilized to analyze EHR to model disease progression and predict diagnosis.
In this study, we propose two interpretable DL architectures based on RNN, namely Time-Aware RNN (TA-RNN) and TA-RNN-Autoencoder (TA-RNN-AE)
To mitigate the impact of irregular time intervals, we propose incorporating time embedding of the elapsed times between visits.
arXiv Detail & Related papers (2024-01-26T07:34:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods.
It establishes a comparative study of early prediction and detection Alzheimer's disease progression.
Finally, a robust and precise detection model is proposed.
arXiv Detail & Related papers (2021-10-10T11:44:16Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.