GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction
- URL: http://arxiv.org/abs/2405.17429v1
- Date: Mon, 27 May 2024 17:59:51 GMT
- Title: GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction
- Authors: Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, Jiwen Lu,
- Abstract summary: 3D semantic occupancy prediction aims to obtain 3D fine-grained geometry and semantics of the surrounding scene.
We propose an object-centric representation to describe 3D scenes with sparse 3D semantic Gaussians.
GaussianFormer achieves comparable performance with state-of-the-art methods with only 17.8% - 24.8% of their memory consumption.
- Score: 70.65250036489128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D semantic occupancy prediction aims to obtain 3D fine-grained geometry and semantics of the surrounding scene and is an important task for the robustness of vision-centric autonomous driving. Most existing methods employ dense grids such as voxels as scene representations, which ignore the sparsity of occupancy and the diversity of object scales and thus lead to unbalanced allocation of resources. To address this, we propose an object-centric representation to describe 3D scenes with sparse 3D semantic Gaussians where each Gaussian represents a flexible region of interest and its semantic features. We aggregate information from images through the attention mechanism and iteratively refine the properties of 3D Gaussians including position, covariance, and semantics. We then propose an efficient Gaussian-to-voxel splatting method to generate 3D occupancy predictions, which only aggregates the neighboring Gaussians for a certain position. We conduct extensive experiments on the widely adopted nuScenes and KITTI-360 datasets. Experimental results demonstrate that GaussianFormer achieves comparable performance with state-of-the-art methods with only 17.8% - 24.8% of their memory consumption. Code is available at: https://github.com/huang-yh/GaussianFormer.
Related papers
- Manboformer: Learning Gaussian Representations via Spatial-temporal Attention Mechanism [0.3277163122167433]
Compared with voxel-based grid prediction, in the field of 3D semantic occupation prediction for autonomous driving, GaussianFormer proposed using 3D Gaussian to describe scenes with sparse 3D semantic Gaussian based on objects is another scheme with lower memory requirements.
In the experiment, it is found that the Gaussian function required by this method is larger than the query resolution of the original dense grid network, resulting in impaired performance.
arXiv Detail & Related papers (2025-03-06T09:40:46Z) - OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies [112.80292725951921]
textbfOVGaussian is a generalizable textbfOpen-textbfVocabulary 3D semantic segmentation framework based on the 3D textbfGaussian representation.
We first construct a large-scale 3D scene dataset based on 3DGS, dubbed textbfSegGaussian, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images.
To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a
arXiv Detail & Related papers (2024-12-31T07:55:35Z) - GaussTR: Foundation Model-Aligned Gaussian Transformer for Self-Supervised 3D Spatial Understanding [44.68350305790145]
GaussTR is a novel Transformer framework that unifies sparse 3D modeling with foundation model alignment through Gaussian representations to advance 3D spatial understanding.
Experiments on the Occ3D-nuScenes dataset demonstrate GaussTR's state-of-the-art zero-shot performance of 12.27 mIoU, along with a 40% reduction in training time.
These results highlight the efficacy of GaussTR for scalable and holistic 3D spatial understanding, with promising implications in autonomous driving and embodied agents.
arXiv Detail & Related papers (2024-12-17T18:59:46Z) - GaussianAD: Gaussian-Centric End-to-End Autonomous Driving [23.71316979650116]
Vision-based autonomous driving shows great potential due to its satisfactory performance and low costs.
Most existing methods adopt dense representations (e.g., bird's eye view) or sparse representations (e.g., instance boxes) for decision-making.
This paper explores a Gaussian-centric end-to-end autonomous driving framework and exploits 3D semantic Gaussians to extensively yet sparsely describe the scene.
arXiv Detail & Related papers (2024-12-13T18:59:30Z) - GaussianFormer-2: Probabilistic Gaussian Superposition for Efficient 3D Occupancy Prediction [55.60972844777044]
3D semantic occupancy prediction is an important task for robust vision-centric autonomous driving.
Most existing methods leverage dense grid-based scene representations, overlooking the spatial sparsity of the driving scenes.
We propose a probabilistic Gaussian superposition model which interprets each Gaussian as a probability distribution of its neighborhood being occupied.
arXiv Detail & Related papers (2024-12-05T17:59:58Z) - EmbodiedOcc: Embodied 3D Occupancy Prediction for Vision-based Online Scene Understanding [63.99937807085461]
3D occupancy prediction provides a comprehensive description of the surrounding scenes.
Most existing methods focus on offline perception from one or a few views.
We formulate an embodied 3D occupancy prediction task to target this practical scenario and propose a Gaussian-based EmbodiedOcc framework to accomplish it.
arXiv Detail & Related papers (2024-12-05T17:57:09Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting [16.480043962212566]
We introduce a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views.
As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost.
arXiv Detail & Related papers (2024-08-21T09:06:30Z) - ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
We build a large-scale dataset of 3DGS using ShapeNet and ModelNet datasets.
Our dataset ShapeSplat consists of 65K objects from 87 unique categories.
We introduce textbftextitGaussian-MAE, which highlights the unique benefits of representation learning from Gaussian parameters.
arXiv Detail & Related papers (2024-08-20T14:49:14Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats [20.833116566243408]
In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics.
We introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians.
Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs.
arXiv Detail & Related papers (2024-06-05T05:52:20Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
We introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting.
Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features into a novel semantic component of 3D Gaussians.
We build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference.
arXiv Detail & Related papers (2024-03-22T21:28:19Z) - Learning Segmented 3D Gaussians via Efficient Feature Unprojection for Zero-shot Neural Scene Segmentation [16.57158278095853]
Zero-shot neural scene segmentation serves as an effective way for scene understanding.
Existing models, especially the efficient 3D Gaussian-based methods, struggle to produce compact segmentation results.
Our work proposes the Feature Unprojection and Fusion module as the segmentation field.
We show that our model surpasses baselines on zero-shot semantic segmentation task, improving by 10% mIoU over the best baseline.
arXiv Detail & Related papers (2024-01-11T14:05:01Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes.
We introduce a compact scene representation organizing the parameters of 3DGS into a 2D grid with local homogeneity.
Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time.
arXiv Detail & Related papers (2023-12-19T20:18:29Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.