Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts
- URL: http://arxiv.org/abs/2405.17442v1
- Date: Wed, 15 May 2024 22:34:52 GMT
- Title: Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts
- Authors: Bhagyashri Tushir, Vikram K Ramanna, Yuhong Liu, Behnam Dezfouli,
- Abstract summary: This work introduces "accumulation score" as a novel approach to capturing fine-grained channel dynamics.
We implement the proposed methods and measure the accuracy and overhead of device identification in real-world scenarios.
The results confirm that by incorporating the accumulation score for balanced data collection and training machine learning algorithms, we achieve an F1 score of over 97% for device identification.
- Score: 4.002351785644765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying IoT devices is crucial for network monitoring, security enforcement, and inventory tracking. However, most existing identification methods rely on deep packet inspection, which raises privacy concerns and adds computational complexity. More importantly, existing works overlook the impact of wireless channel dynamics on the accuracy of layer-2 features, thereby limiting their effectiveness in real-world scenarios. In this work, we define and use the latency of specific probe-response packet exchanges, referred to as "device latency," as the main feature for device identification. Additionally, we reveal the critical impact of wireless channel dynamics on the accuracy of device identification based on device latency. Specifically, this work introduces "accumulation score" as a novel approach to capturing fine-grained channel dynamics and their impact on device latency when training machine learning models. We implement the proposed methods and measure the accuracy and overhead of device identification in real-world scenarios. The results confirm that by incorporating the accumulation score for balanced data collection and training machine learning algorithms, we achieve an F1 score of over 97% for device identification, even amidst wireless channel dynamics, a significant improvement over the 75% F1 score achieved by disregarding the impact of channel dynamics on data collection and device latency.
Related papers
- Locality Sensitive Hashing for Network Traffic Fingerprinting [5.062312533373298]
We use locality-sensitive hashing (LSH) for network traffic fingerprinting.
Our method increases the accuracy of state-of-the-art by 12% achieving around 94% accuracy in identifying devices in a network.
arXiv Detail & Related papers (2024-02-12T21:14:37Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
Next-generation networks aim for comprehensive connectivity, interconnecting humans, machines, devices, and systems seamlessly.
To address this challenge, the Zero Trust (ZT) paradigm emerges as a key method for safeguarding network integrity and data confidentiality.
This work introduces EPS-CNN, a novel deep-learning-based wireless device identification framework.
arXiv Detail & Related papers (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Attention-Enhanced Deep Learning for Device-Free Through-the-Wall
Presence Detection Using Indoor WiFi Systems [9.087163485833054]
We propose a novel system for human presence detection using the channel state information (CSI) of WiFi signals.
Our system named attention-enhanced deep learning for presence detection (ALPD) employs an attention mechanism to automatically select informative subcarriers from the CSI data.
We evaluate the proposed ALPD system by deploying a pair of WiFi access points (APs) for collecting CSI dataset, which is further compared with several benchmarks.
arXiv Detail & Related papers (2023-04-25T19:17:36Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
Classification between different activities in an indoor environment using wireless signals is an emerging technology for various applications.
In this paper, we analyze classification of moving objects by employing machine learning on real data from a massive multi-input-multi-output (MIMO) system in an indoor environment.
arXiv Detail & Related papers (2021-02-09T15:48:35Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - A Comparative Study of AI-based Intrusion Detection Techniques in
Critical Infrastructures [4.8041243535151645]
We present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications.
Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognize intrusive behavior in the collected traffic.
Results present the performance metrics for three different IDSs namely the Adaptively Supervised and Clustered Hybrid IDS, Boltzmann Machine-based Clustered IDS and Q-learning based IDS.
arXiv Detail & Related papers (2020-07-24T20:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.