Comparing ImageNet Pre-training with Digital Pathology Foundation Models for Whole Slide Image-Based Survival Analysis
- URL: http://arxiv.org/abs/2405.17446v2
- Date: Sun, 10 Nov 2024 20:52:56 GMT
- Title: Comparing ImageNet Pre-training with Digital Pathology Foundation Models for Whole Slide Image-Based Survival Analysis
- Authors: Kleanthis Marios Papadopoulos,
- Abstract summary: Several Multiple Instance Learning frameworks proposed for this task utilize a ResNet50 backbone pre-trained on natural images.
Our code will be made publicly available upon acceptance.
- Score: 0.0
- License:
- Abstract: The abundance of information present in Whole Slide Images (WSIs) renders them an essential tool for survival analysis. Several Multiple Instance Learning frameworks proposed for this task utilize a ResNet50 backbone pre-trained on natural images. By leveraging recenetly released histopathological foundation models such as UNI and Hibou, the predictive prowess of existing MIL networks can be enhanced. Furthermore, deploying an ensemble of digital pathology foundation models yields higher baseline accuracy, although the benefits appear to diminish with more complex MIL architectures. Our code will be made publicly available upon acceptance.
Related papers
- Foundation Models for Slide-level Cancer Subtyping in Digital Pathology [1.7641392161755438]
This work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework.
Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes.
arXiv Detail & Related papers (2024-10-21T11:04:58Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - PROMPT-IML: Image Manipulation Localization with Pre-trained Foundation
Models Through Prompt Tuning [35.39822183728463]
We present a novel Prompt-IML framework for detecting tampered images.
Humans tend to discern authenticity of an image based on semantic and high-frequency information.
Our model can achieve better performance on eight typical fake image datasets.
arXiv Detail & Related papers (2024-01-01T03:45:07Z) - When is a Foundation Model a Foundation Model [1.306205741109041]
Foundation models are large, deep artificial neural networks capable of learning the context of a specific domain through training on exceptionally extensive datasets.
We have observed that the representations generated by such models exhibit inferior performance in retrieval tasks within digital pathology when compared to those generated by significantly smaller, conventional deep networks.
arXiv Detail & Related papers (2023-09-14T18:03:33Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z) - Whole Slide Images based Cancer Survival Prediction using Attention
Guided Deep Multiple Instance Learning Networks [38.39901070720532]
Current image-based survival models that limit to key patches or clusters derived from Whole Slide Images (WSIs)
We propose Deep Attention Multiple Instance Survival Learning (DeepAttnMISL) by introducing both siamese MI-FCN and attention-based MIL pooling.
We evaluated our methods on two large cancer whole slide images datasets and our results suggest that the proposed approach is more effective and suitable for large datasets.
arXiv Detail & Related papers (2020-09-23T14:31:15Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.