Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks
- URL: http://arxiv.org/abs/2405.17460v1
- Date: Thu, 23 May 2024 04:30:41 GMT
- Title: Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks
- Authors: Yafeng Yan, Shuyao He, Zhou Yu, Jiajie Yuan, Ziang Liu, Yan Chen,
- Abstract summary: This paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN)
The proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
- Score: 15.04251924479172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming at the limitations of traditional medical decision system in processing large-scale heterogeneous medical data and realizing highly personalized recommendation, this paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN). This research innovatively integrates graph neural network technology into the medical and health field, aiming to build a high-precision representation model of patient health status by mining the complex association between patients' clinical characteristics, genetic information, living habits. In this study, medical data is preprocessed to transform it into a graph structure, where nodes represent different data entities (such as patients, diseases, genes, etc.) and edges represent interactions or relationships between entities. The core of the algorithm is to design a novel multi-scale fusion mechanism, combining the historical medical records, physiological indicators and genetic characteristics of patients, to dynamically adjust the attention allocation strategy of the graph neural network, so as to achieve highly customized analysis of individual cases. In the experimental part, this study selected several publicly available medical data sets for validation, and the results showed that compared with traditional machine learning methods and a single graph neural network model, the proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
Related papers
- Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
We propose a systematic approach to examine the results of GNN models trained with structured and unstructured information from the MIMIC-III dataset.
We show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.
arXiv Detail & Related papers (2024-08-27T09:48:25Z) - AdaMedGraph: Adaboosting Graph Neural Networks for Personalized Medicine [31.424781716926848]
We propose a novel algorithm named ours, which can automatically select important features to construct multiple patient similarity graphs.
ours is evaluated on two real-world medical scenarios and shows superiors performance.
arXiv Detail & Related papers (2023-11-24T06:27:25Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Graph AI in Medicine [9.733108180046555]
Graph neural networks (GNNs) process data holistically by viewing modalities as nodes interconnected by their relationships.
GNNs capture information through localized neural transformations defined on graph relationships.
Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge.
arXiv Detail & Related papers (2023-10-20T19:01:01Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients.
We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs.
We evaluate our model an outcome prediction task on a Tuberculosis dataset consistently outperforming several state-of-the-art neural, graph-based and traditional fusion techniques.
arXiv Detail & Related papers (2023-07-13T23:52:41Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph Convolutional Networks for Multi-modality Medical Imaging:
Methods, Architectures, and Clinical Applications [13.940158397866625]
Development of graph convolutional networks (GCNs) has spawned a new wave of research in medical imaging analysis.
GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis.
arXiv Detail & Related papers (2022-02-17T22:03:59Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.