Advancing Cultural Inclusivity: Optimizing Embedding Spaces for Balanced Music Recommendations
- URL: http://arxiv.org/abs/2405.17607v1
- Date: Mon, 27 May 2024 19:12:53 GMT
- Title: Advancing Cultural Inclusivity: Optimizing Embedding Spaces for Balanced Music Recommendations
- Authors: Armin Moradi, Nicola Neophytou, Golnoosh Farnadi,
- Abstract summary: Popularity bias in music recommendation systems can propagate along demographic and cultural axes.
We identify these biases in recommendations for artists from underrepresented cultural groups in prototype-based matrix factorization methods.
Our results demonstrate significant improvements in reducing popularity bias and enhancing demographic and cultural fairness in music recommendations.
- Score: 4.276697874428501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popularity bias in music recommendation systems -- where artists and tracks with the highest listen counts are recommended more often -- can also propagate biases along demographic and cultural axes. In this work, we identify these biases in recommendations for artists from underrepresented cultural groups in prototype-based matrix factorization methods. Unlike traditional matrix factorization methods, prototype-based approaches are interpretable. This allows us to directly link the observed bias in recommendations for minority artists (the effect) to specific properties of the embedding space (the cause). We mitigate popularity bias in music recommendation through capturing both users' and songs' cultural nuances in the embedding space. To address these challenges while maintaining recommendation quality, we propose two novel enhancements to the embedding space: i) we propose an approach to filter-out the irrelevant prototypes used to represent each user and item to improve generalizability, and ii) we introduce regularization techniques to reinforce a more uniform distribution of prototypes within the embedding space. Our results demonstrate significant improvements in reducing popularity bias and enhancing demographic and cultural fairness in music recommendations while achieving competitive -- if not better -- overall performance.
Related papers
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with
Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - MusicRL: Aligning Music Generation to Human Preferences [62.44903326718772]
MusicRL is the first music generation system finetuned from human feedback.
We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences.
We train MusicRL-U, the first text-to-music model that incorporates human feedback at scale.
arXiv Detail & Related papers (2024-02-06T18:36:52Z) - Popularity Degradation Bias in Local Music Recommendation [0.13597551064547497]
We study the effect of popularity degradation bias in the context of local music recommendations.
We find that both algorithms improve recommendation performance for more popular artists.
Mult-VAE shows better relative performance for less popular artists.
arXiv Detail & Related papers (2023-09-20T22:36:33Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
We explore the intrinsic relationship between music discovery and popularity bias.
We propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems.
Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations.
arXiv Detail & Related papers (2023-08-28T14:12:25Z) - Exploiting Negative Preference in Content-based Music Recommendation
with Contrastive Learning [16.728976424372362]
We analyze the role of negative preference in users' music tastes by comparing music recommendation models with contrastive learning exploiting preference (CLEP)
Our experimental results show that CLEP-N outperforms the other two in accuracy and false positive rate.
arXiv Detail & Related papers (2022-07-28T07:02:48Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Explainability in Music Recommender Systems [69.0506502017444]
We discuss how explainability can be addressed in the context of Music Recommender Systems (MRSs)
MRSs are often quite complex and optimized for recommendation accuracy.
We show how explainability components can be integrated within a MRS and in what form explanations can be provided.
arXiv Detail & Related papers (2022-01-25T18:32:11Z) - Follow the guides: disentangling human and algorithmic curation in
online music consumption [1.4506962780822348]
We analyze the complete listening history of about 9k users over one year.
We show that the two types of recommendation offered by music platforms -- algorithmic and editorial -- may drive the consumption of more or less diverse content in opposite directions.
arXiv Detail & Related papers (2021-09-08T20:14:48Z) - Listener Modeling and Context-aware Music Recommendation Based on
Country Archetypes [10.19712238203935]
Music preferences are strongly shaped by the cultural and socio-economic background of the listener.
We use state-of-the-art unsupervised learning techniques to investigate country profiles of music preferences on the fine-grained level of music tracks.
We propose a context-aware music recommendation system that leverages implicit user feedback.
arXiv Detail & Related papers (2020-09-11T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.