GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns
- URL: http://arxiv.org/abs/2405.17609v3
- Date: Thu, 5 Sep 2024 14:00:27 GMT
- Title: GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns
- Authors: Maria Korosteleva, Timur Levent Kesdogan, Fabian Kemper, Stephan Wenninger, Jasmin Koller, Yuhan Zhang, Mario Botsch, Olga Sorkine-Hornung,
- Abstract summary: We present the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns.
GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories.
We propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator.
- Score: 18.513707884523072
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/
Related papers
- Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Dress-Me-Up: A Dataset & Method for Self-Supervised 3D Garment
Retargeting [28.892029042436626]
We propose a novel framework for non-parametricized 3D garments onto 3D human avatars of arbitrary shapes and poses.
Existing self-supervised 3D methods only support parametric and canonical garments.
We show superior quality on non-supervised garments and human avatars over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-06T02:28:25Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3D is a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on ShapeNet datasets.
This pipeline converts each raw 3D model into comprehensive multi-modal data representation.
The selection of data sources for our dataset is based on their scale and quality.
arXiv Detail & Related papers (2023-06-19T07:03:45Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
We propose a novel affine-combining autoencoder (ACAE) method to perform dimensionality reduction on the number of landmarks.
Our approach scales to an extreme multi-dataset regime, where we use 28 3D human pose datasets to supervise one model.
arXiv Detail & Related papers (2022-12-29T22:22:49Z) - Structure-Preserving 3D Garment Modeling with Neural Sewing Machines [190.70647799442565]
We propose a novel Neural Sewing Machine (NSM), a learning-based framework for structure-preserving 3D garment modeling.
NSM is capable of representing 3D garments under diverse garment shapes and topologies, realistically reconstructing 3D garments from 2D images with the preserved structure, and accurately manipulating the 3D garment categories, shapes, and topologies.
arXiv Detail & Related papers (2022-11-12T16:43:29Z) - Generating Datasets of 3D Garments with Sewing Patterns [10.729374293332281]
We create the first large-scale synthetic dataset of 3D garment models with their sewing patterns.
The dataset contains more than 20000 garment design variations produced from 19 different base types.
arXiv Detail & Related papers (2021-09-12T23:03:48Z) - Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On [9.293488420613148]
We present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network.
In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments.
Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing.
arXiv Detail & Related papers (2020-09-09T22:38:03Z) - SIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size
Sensitive 3D Clothing [50.63492603374867]
We introduce SizerNet to predict 3D clothing conditioned on human body shape and garment size parameters.
We also introduce Net to infer garment meshes and shape under clothing with personal details in a single pass from an input mesh.
arXiv Detail & Related papers (2020-07-22T18:13:24Z) - Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction
from Single Images [50.34202789543989]
Deep Fashion3D is the largest collection to date of 3D garment models.
It provides rich annotations including 3D feature lines, 3D body pose and the corresponded multi-view real images.
A novel adaptable template is proposed to enable the learning of all types of clothing in a single network.
arXiv Detail & Related papers (2020-03-28T09:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.