Probabilistically Plausible Counterfactual Explanations with Normalizing Flows
- URL: http://arxiv.org/abs/2405.17640v2
- Date: Wed, 7 Aug 2024 07:29:39 GMT
- Title: Probabilistically Plausible Counterfactual Explanations with Normalizing Flows
- Authors: Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, Maciej Zięba,
- Abstract summary: We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations.
Our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions.
PPCEF is a powerful tool for interpreting machine learning models and for improving fairness, accountability, and trust in AI systems.
- Score: 2.675793767640172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations (CFs). PPCEF advances beyond existing methods by combining a probabilistic formulation that leverages the data distribution with the optimization of plausibility within a unified framework. Compared to reference approaches, our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions. This ensures CFs are not only valid (i.e., achieve class change) but also align with the underlying data's probability density. For that purpose, our approach leverages normalizing flows as powerful density estimators to capture the complex high-dimensional data distribution. Furthermore, we introduce a novel loss that balances the trade-off between achieving class change and maintaining closeness to the original instance while also incorporating a probabilistic plausibility term. PPCEF's unconstrained formulation allows for efficient gradient-based optimization with batch processing, leading to orders of magnitude faster computation compared to prior methods. Moreover, the unconstrained formulation of PPCEF allows for the seamless integration of future constraints tailored to specific counterfactual properties. Finally, extensive evaluations demonstrate PPCEF's superiority in generating high-quality, probabilistically plausible counterfactual explanations in high-dimensional tabular settings. This makes PPCEF a powerful tool for not only interpreting complex machine learning models but also for improving fairness, accountability, and trust in AI systems.
Related papers
- Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
We propose a novel framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank.
Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Borrowing Strength in Distributionally Robust Optimization via Hierarchical Dirichlet Processes [35.53901341372684]
Our approach unifies regularized estimation, distributionally robust optimization, and hierarchical Bayesian modeling.
By employing a hierarchical Dirichlet process (HDP) prior, the method effectively handles multi-source data.
Numerical experiments validate the framework's efficacy in improving and stabilizing both prediction and parameter estimation accuracy.
arXiv Detail & Related papers (2024-05-21T19:03:09Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data [5.8010446129208155]
An imprecise SHAP is proposed for cases when the class probability distributions are imprecise and represented by sets of distributions.
The first idea behind the imprecise SHAP is a new approach for computing the marginal contribution of a feature.
The second idea is an attempt to consider a general approach to calculating and reducing interval-valued Shapley values.
arXiv Detail & Related papers (2021-06-16T20:30:26Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
We propose a novel variational family that allows for retaining covariances between latent processes while achieving fast convergence.
We provide an efficient implementation of our new approach and apply it to several benchmark datasets.
It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
arXiv Detail & Related papers (2020-05-22T11:10:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.