What's the Opposite of a Face? Finding Shared Decodable Concepts and their Negations in the Brain
- URL: http://arxiv.org/abs/2405.17663v1
- Date: Mon, 27 May 2024 21:28:26 GMT
- Title: What's the Opposite of a Face? Finding Shared Decodable Concepts and their Negations in the Brain
- Authors: Cory Efird, Alex Murphy, Joel Zylberberg, Alona Fyshe,
- Abstract summary: We train a highly accurate contrastive model that maps brain responses during naturalistic image viewing to CLIP embeddings.
We then use a novel adaptation of the DBSCAN clustering algorithm to cluster the parameters of participant-specific contrastive models.
Examining the images most and least associated with each SDC cluster gives us additional insight into the semantic properties of each SDC.
- Score: 4.111712524255376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior work has offered evidence for functional localization in the brain; different anatomical regions preferentially activate for certain types of visual input. For example, the fusiform face area preferentially activates for visual stimuli that include a face. However, the spectrum of visual semantics is extensive, and only a few semantically-tuned patches of cortex have so far been identified in the human brain. Using a multimodal (natural language and image) neural network architecture (CLIP) we train a highly accurate contrastive model that maps brain responses during naturalistic image viewing to CLIP embeddings. We then use a novel adaptation of the DBSCAN clustering algorithm to cluster the parameters of these participant-specific contrastive models. This reveals what we call Shared Decodable Concepts (SDCs): clusters in CLIP space that are decodable from common sets of voxels across multiple participants. Examining the images most and least associated with each SDC cluster gives us additional insight into the semantic properties of each SDC. We note SDCs for previously reported visual features (e.g. orientation tuning in early visual cortex) as well as visual semantic concepts such as faces, places and bodies. In cases where our method finds multiple clusters for a visuo-semantic concept, the least associated images allow us to dissociate between confounding factors. For example, we discovered two clusters of food images, one driven by color, the other by shape. We also uncover previously unreported areas such as regions of extrastriate body area (EBA) tuned for legs/hands and sensitivity to numerosity in right intraparietal sulcus, and more. Thus, our contrastive-learning methodology better characterizes new and existing visuo-semantic representations in the brain by leveraging multimodal neural network representations and a novel adaptation of clustering algorithms.
Related papers
- Brain Mapping with Dense Features: Grounding Cortical Semantic Selectivity in Natural Images With Vision Transformers [5.265058307999745]
We introduce BrainSAIL, a method for isolating neurally-activating visual concepts in images.
BrainSAIL exploits semantically consistent, dense spatial features from pre-trained vision models.
We validate BrainSAIL on cortical regions with known category selectivity.
arXiv Detail & Related papers (2024-10-07T17:59:45Z) - Parallel Backpropagation for Shared-Feature Visualization [36.31730251757713]
Recent work has shown that some out-of-category stimuli also activate neurons in high-level visual brain regions.
This may be due to visual features common among the preferred class also being present in other images.
Here, we propose a deep-learning-based approach for visualizing these features.
arXiv Detail & Related papers (2024-05-16T05:56:03Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Identifying Shared Decodable Concepts in the Human Brain Using
Image-Language Foundation Models [2.213723689024101]
We introduce a method that takes advantage of high-quality pretrained multimodal representations to explore fine-grained semantic networks in the human brain.
To identify such brain regions, we developed a data-driven approach to uncover visual concepts that are decodable from a massive functional magnetic resonance imaging (fMRI) dataset.
arXiv Detail & Related papers (2023-06-06T03:29:47Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
We propose a novel approach to brain decoding that also relies on semantic and contextual similarity.
We employ an fMRI dataset of natural image vision and create a deep learning decoding pipeline inspired by the existence of both bottom-up and top-down processes in human vision.
We produce reconstructions of visual stimuli that match the original content very well on a semantic level, surpassing the state of the art in previous literature.
arXiv Detail & Related papers (2022-12-13T16:54:08Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Visual Recognition with Deep Nearest Centroids [57.35144702563746]
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective network for large-scale visual recognition.
Compared with parametric counterparts, DNC performs better on image classification (CIFAR-10, ImageNet) and greatly boots pixel recognition (ADE20K, Cityscapes)
arXiv Detail & Related papers (2022-09-15T15:47:31Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Grounding Psychological Shape Space in Convolutional Neural Networks [0.0]
We use convolutional neural networks to learn a generalizable mapping between perceptual inputs and a recently proposed psychological similarity space for the shape domain.
Our results indicate that a classification-based multi-task learning scenario yields the best results, but that its performance is relatively sensitive to the dimensionality of the similarity space.
arXiv Detail & Related papers (2021-11-16T12:21:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.