Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent
- URL: http://arxiv.org/abs/2405.17680v1
- Date: Mon, 27 May 2024 22:15:23 GMT
- Title: Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent
- Authors: Yi Xu, Yun Fu,
- Abstract summary: We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
- Score: 53.637837706712794
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding multi-agent behavior is critical across various fields. The conventional approach involves analyzing agent movements through three primary tasks: trajectory prediction, imputation, and spatial-temporal recovery. Considering the unique input formulation and constraint of these tasks, most existing methods are tailored to address only one specific task. However, in real-world applications, these scenarios frequently occur simultaneously. Consequently, methods designed for one task often fail to adapt to others, resulting in performance drops. To overcome this limitation, we propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs, adaptable to diverse scenarios. Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction. We further extend recent successful State Space Models (SSMs), particularly the Mamba model, into a Bidirectional Temporal Mamba to effectively capture temporal dependencies. Additionally, we incorporate a Bidirectional Temporal Scaled (BTS) module to comprehensively scan trajectories while maintaining the temporal missing relationships within the sequence. We curate and benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation. Extensive experiments demonstrate the superior performance of our model. To the best of our knowledge, this is the first work that addresses this unified problem through a versatile generative framework, thereby enhancing our understanding of multi-agent movement. Our datasets, code, and model weights are available at https://github.com/colorfulfuture/UniTraj-pytorch.
Related papers
- TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models [0.0]
We propose replacing time-oriented Transformers with State-Space Models (SSM)
We develop a model that integrates SSM, Graph Neural Networks, and node-oriented Transformers to achieve enhanced representations.
arXiv Detail & Related papers (2024-10-08T11:10:06Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Snipper: A Spatiotemporal Transformer for Simultaneous Multi-Person 3D
Pose Estimation Tracking and Forecasting on a Video Snippet [24.852728097115744]
Multi-person pose understanding from RGB involves three complex tasks: pose estimation, tracking and motion forecasting.
Most existing works either focus on a single task or employ multi-stage approaches to solving multiple tasks separately.
We propose Snipper, a unified framework to perform multi-person 3D pose estimation, tracking, and motion forecasting simultaneously in a single stage.
arXiv Detail & Related papers (2022-07-09T18:42:14Z) - Learning Behavior Representations Through Multi-Timescale Bootstrapping [8.543808476554695]
We introduce Bootstrap Across Multiple Scales (BAMS), a multi-scale representation learning model for behavior.
We first apply our method on a dataset of quadrupeds navigating in different terrain types, and show that our model captures the temporal complexity of behavior.
arXiv Detail & Related papers (2022-06-14T17:57:55Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - P-STMO: Pre-Trained Spatial Temporal Many-to-One Model for 3D Human Pose
Estimation [78.83305967085413]
This paper introduces a novel Pre-trained Spatial Temporal Many-to-One (P-STMO) model for 2D-to-3D human pose estimation task.
Our method outperforms state-of-the-art methods with fewer parameters and less computational overhead.
arXiv Detail & Related papers (2022-03-15T04:00:59Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.