ORLM: Training Large Language Models for Optimization Modeling
- URL: http://arxiv.org/abs/2405.17743v2
- Date: Thu, 30 May 2024 02:12:05 GMT
- Title: ORLM: Training Large Language Models for Optimization Modeling
- Authors: Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, Benyou Wang,
- Abstract summary: Large Language Models (LLMs) have emerged as powerful tools for tackling complex Operations Research (OR) problem.
To tackle this issue, we propose training open-source LLMs for optimization modeling.
Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks.
- Score: 16.348267803499404
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for tackling complex Operations Research (OR) problem by providing the capacity in automating optimization modeling. However, current methodologies heavily rely on prompt engineering (e.g., multi-agent cooperation) with proprietary LLMs, raising data privacy concerns that could be prohibitive in industry applications. To tackle this issue, we propose training open-source LLMs for optimization modeling. We identify four critical requirements for the training dataset of OR LLMs, design and implement OR-Instruct, a semi-automated process for creating synthetic data tailored to specific requirements. We also introduce the IndustryOR benchmark, the first industrial benchmark for testing LLMs on solving real-world OR problems. We apply the data from OR-Instruct to various open-source LLMs of 7b size (termed as ORLMs), resulting in a significantly improved capability for optimization modeling. Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Our code and data are available at \url{https://github.com/Cardinal-Operations/ORLM}.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning, tasks and agent systems.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an open cookbook'' for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.