The Binary Quantized Neural Network for Dense Prediction via Specially Designed Upsampling and Attention
- URL: http://arxiv.org/abs/2405.17776v1
- Date: Tue, 28 May 2024 03:12:33 GMT
- Title: The Binary Quantized Neural Network for Dense Prediction via Specially Designed Upsampling and Attention
- Authors: Xingyu Ding, Lianlei Shan, Guiqin Zhao, Meiqi Wu, Wenzhang Zhou, Wei Li,
- Abstract summary: We propose an effective upsampling method and an efficient attention computation strategy to transfer the success of the binary neural networks (BNN) from single prediction tasks to dense prediction tasks.
Our attention method can reduce the computational complexity by a factor of one hundred times but retain the original effect.
- Score: 6.659719111319061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based information processing consumes long time and requires huge computing resources, especially for dense prediction tasks which require an output for each pixel, like semantic segmentation and salient object detection. There are mainly two challenges for quantization of dense prediction tasks. Firstly, directly applying the upsampling operation that dense prediction tasks require is extremely crude and causes unacceptable accuracy reduction. Secondly, the complex structure of dense prediction networks means it is difficult to maintain a fast speed as well as a high accuracy when performing quantization. In this paper, we propose an effective upsampling method and an efficient attention computation strategy to transfer the success of the binary neural networks (BNN) from single prediction tasks to dense prediction tasks. Firstly, we design a simple and robust multi-branch parallel upsampling structure to achieve the high accuracy. Then we further optimize the attention method which plays an important role in segmentation but has huge computation complexity. Our attention method can reduce the computational complexity by a factor of one hundred times but retain the original effect. Experiments on Cityscapes, KITTI road, and ECSSD fully show the effectiveness of our work.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training [9.02251811867533]
YOSO (You-Only-Sample-Once) is an algorithm designed to achieve efficient training while preserving prediction accuracy.
YOSO not only avoids costly computations in traditional compressed sensing (CS) methods, such as orthonormal basis calculations, but also ensures high-probability accuracy retention.
arXiv Detail & Related papers (2024-11-08T16:47:51Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
We introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method.
We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks.
arXiv Detail & Related papers (2020-12-23T18:11:30Z) - A Partial Regularization Method for Network Compression [0.0]
We propose an approach of partial regularization rather than the original form of penalizing all parameters, which is said to be full regularization, to conduct model compression at a higher speed.
Experimental results show that as we expected, the computational complexity is reduced by observing less running time in almost all situations.
Surprisingly, it helps to improve some important metrics such as regression fitting results and classification accuracy in both training and test phases on multiple datasets.
arXiv Detail & Related papers (2020-09-03T00:38:27Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
We propose an efficient and accurate deep network for disparity estimation named FADNet.
It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.
arXiv Detail & Related papers (2020-03-24T10:27:11Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.