MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization
- URL: http://arxiv.org/abs/2405.17873v2
- Date: Thu, 30 May 2024 01:51:10 GMT
- Title: MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization
- Authors: Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan, Guohao Dai, Yu Wang,
- Abstract summary: Recent few-step diffusion models reduce the inference time by reducing the denoising steps.
The Post Training Quantization (PTQ) replaces high bit-width FP representation with low-bit integer values.
However, when applying to few-step diffusion models, existing quantization methods face challenges in preserving both the image quality and text alignment.
- Score: 16.83403134551842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have achieved significant visual generation quality. However, their significant computational and memory costs pose challenge for their application on resource-constrained mobile devices or even desktop GPUs. Recent few-step diffusion models reduces the inference time by reducing the denoising steps. However, their memory consumptions are still excessive. The Post Training Quantization (PTQ) replaces high bit-width FP representation with low-bit integer values (INT4/8) , which is an effective and efficient technique to reduce the memory cost. However, when applying to few-step diffusion models, existing quantization methods face challenges in preserving both the image quality and text alignment. To address this issue, we propose an mixed-precision quantization framework - MixDQ. Firstly, We design specialized BOS-aware quantization method for highly sensitive text embedding quantization. Then, we conduct metric-decoupled sensitivity analysis to measure the sensitivity of each layer. Finally, we develop an integer-programming-based method to conduct bit-width allocation. While existing quantization methods fall short at W8A8, MixDQ could achieve W8A8 without performance loss, and W4A8 with negligible visual degradation. Compared with FP16, we achieve 3-4x reduction in model size and memory cost, and 1.45x latency speedup.
Related papers
- PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [87.89013794655207]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.
We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.
Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - Low-Bitwidth Floating Point Quantization for Efficient High-Quality Diffusion Models [2.926259075657424]
Diffusion models generate images by iteratively denoising random Gaussian noise using deep neural networks.
Recent works propose low-bitwidth (e.g., 8-bit or 4-bit) quantization for diffusion models, however 4-bit integer quantization typically results in low-quality images.
We propose an effective floating-point quantization method for diffusion models that provides better image quality compared to integer quantization methods.
arXiv Detail & Related papers (2024-08-13T15:56:20Z) - ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation [23.00085349135532]
Post-Training Quantization (PTQ) is an effective method for reducing memory costs and computational complexity.
We find that applying existing diffusion quantization methods for U-Net faces challenges in preserving quality.
We improve ViDiT-Q with a novel metric-decoupled mixed-precision quantization method (ViDiT-Q-MP)
arXiv Detail & Related papers (2024-06-04T17:57:10Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMM is a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware.
Our implementation outperforms corresponding 8-bit integer kernels by up to 1.74x on x86 platforms.
arXiv Detail & Related papers (2023-04-18T15:13:10Z) - F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization [47.403304754934155]
We present F8Net, a novel quantization framework consisting of only fixed-point 8-bit multiplication.
Our approach achieves comparable and better performance, when compared with existing quantization techniques.
arXiv Detail & Related papers (2022-02-10T18:48:56Z) - 8-bit Optimizers via Block-wise Quantization [57.25800395197516]
Statefuls maintain statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past values.
This state can be used to accelerate optimization compared to plain gradient descent but uses memory that might otherwise be allocated to model parameters.
In this paper, we develop first gradients that use 8-bit statistics while maintaining the performance levels of using 32-bit gradient states.
arXiv Detail & Related papers (2021-10-06T15:43:20Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
We propose Q-ASR, an integer-only, zero-shot quantization scheme for ASR models.
We show negligible WER change as compared to the full-precision baseline models.
Q-ASR exhibits a large compression rate of more than 4x with small WER degradation.
arXiv Detail & Related papers (2021-03-31T06:05:40Z) - HAWQV3: Dyadic Neural Network Quantization [73.11579145354801]
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values.
We present HAWQV3, a novel mixed-precision integer-only quantization framework.
arXiv Detail & Related papers (2020-11-20T23:51:43Z) - Leveraging Automated Mixed-Low-Precision Quantization for tiny edge
microcontrollers [76.30674794049293]
This paper presents an automated mixed-precision quantization flow based on the HAQ framework but tailored for the memory and computational characteristics of MCU devices.
Specifically, a Reinforcement Learning agent searches for the best uniform quantization levels, among 2, 4, 8 bits, of individual weight and activation tensors.
Given an MCU-class memory bound to 2MB for weight-only quantization, the compressed models produced by the mixed-precision engine result as accurate as the state-of-the-art solutions.
arXiv Detail & Related papers (2020-08-12T06:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.