Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models
- URL: http://arxiv.org/abs/2405.17915v1
- Date: Tue, 28 May 2024 07:36:56 GMT
- Title: Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models
- Authors: Longze Chen, Ziqiang Liu, Wanwei He, Yunshui Li, Run Luo, Min Yang,
- Abstract summary: Long-context modeling capabilities are important for large language models (LLMs) in various applications.
We propose a data mining framework textbfProLong that can assign each training sample with a long dependency score.
Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies.
- Score: 13.091271774417867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts. In this study, we propose a data mining framework \textbf{ProLong} that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the \textit{Dependency Strength} between text segments in a given document. Then we refine this metric based on the \textit{Dependency Distance} of these segments to incorporate spatial relationships across long-contexts. Final results are calibrated with a \textit{Dependency Specificity} metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities.
Related papers
- Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement [62.87020831987625]
We propose a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations.
We select the most challenging samples as the influential data to effectively frame the long-range dependencies.
Experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
arXiv Detail & Related papers (2024-10-21T04:30:53Z) - How to Train Long-Context Language Models (Effectively) [75.5418485597276]
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information.
ProLong-8B, which is from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K.
arXiv Detail & Related papers (2024-10-03T16:46:52Z) - LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models [61.12177317970258]
LongSkywork is a long-context Large Language Model capable of processing up to 200,000 tokens.
We develop two novel methods for creating synthetic data.
LongSkywork achieves outstanding performance on a variety of long-context benchmarks.
arXiv Detail & Related papers (2024-06-02T03:34:41Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
This paper introduces Step-Skipping Alignment (SkipAlign)
It is a new technique designed to enhance the long-context capabilities of Large Language Models (LLMs)
With a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
arXiv Detail & Related papers (2024-05-07T01:56:22Z) - LongAlign: A Recipe for Long Context Alignment of Large Language Models [61.85923382850057]
LongAlign is a recipe of the instruction data, training, and evaluation for long context alignment.
We construct a long instruction-following dataset using Self-Instruct.
We adopt the packing and sorted strategies to speed up supervised fine-tuning on data with varied length distributions.
arXiv Detail & Related papers (2024-01-31T18:29:39Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens.
Our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2.
arXiv Detail & Related papers (2023-09-27T21:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.