ReChorus2.0: A Modular and Task-Flexible Recommendation Library
- URL: http://arxiv.org/abs/2405.18058v1
- Date: Tue, 28 May 2024 11:14:15 GMT
- Title: ReChorus2.0: A Modular and Task-Flexible Recommendation Library
- Authors: Jiayu Li, Hanyu Li, Zhiyu He, Weizhi Ma, Peijie Sun, Min Zhang, Shaoping Ma,
- Abstract summary: ReChorus is a modular and task-flexible library for recommendation researchers.
ReChorus helps realize more recommendation tasks with more data types.
- Score: 31.28528661684178
- License:
- Abstract: With the applications of recommendation systems rapidly expanding, an increasing number of studies have focused on every aspect of recommender systems with different data inputs, models, and task settings. Therefore, a flexible library is needed to help researchers implement the experimental strategies they require. Existing open libraries for recommendation scenarios have enabled reproducing various recommendation methods and provided standard implementations. However, these libraries often impose certain restrictions on data and seldom support the same model to perform different tasks and input formats, limiting users from customized explorations. To fill the gap, we propose ReChorus2.0, a modular and task-flexible library for recommendation researchers. Based on ReChorus, we upgrade the supported input formats, models, and training&evaluation strategies to help realize more recommendation tasks with more data types. The main contributions of ReChorus2.0 include: (1) Realization of complex and practical tasks, including reranking and CTR prediction tasks; (2) Inclusion of various context-aware and rerank recommenders; (3) Extension of existing and new models to support different tasks with the same models; (4) Support of highly-customized input with impression logs, negative items, or click labels, as well as user, item, and situation contexts. To summarize, ReChorus2.0 serves as a comprehensive and flexible library better aligning with the practical problems in the recommendation scenario and catering to more diverse research needs. The implementation and detailed tutorials of ReChorus2.0 can be found at https://github.com/THUwangcy/ReChorus.
Related papers
- EasyRL4Rec: An Easy-to-use Library for Reinforcement Learning Based Recommender Systems [18.22130279210423]
We introduce EasyRL4Rec, an easy-to-use code library designed specifically for RL-based RSs.
This library provides lightweight and diverse RL environments based on five public datasets.
EasyRL4Rec seeks to facilitate the model development and experimental process in the domain of RL-based RSs.
arXiv Detail & Related papers (2024-02-23T07:54:26Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems [100.54655931138444]
We propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions.
We present a robustness evaluation toolkit, Robustness Gym for RecSys, that allows us to quickly and uniformly evaluate the robustness of recommender system models.
arXiv Detail & Related papers (2022-01-12T10:32:53Z) - CSSR: A Context-Aware Sequential Software Service Recommendation Model [4.306391411024746]
We propose a novel software service recommendation model to help users find their suitable repositories in GitHub.
Our model first designs a novel context-induced repository graph embedding method to leverage rich contextual information of repositories.
It then leverages sequence information of user-repository interactions for the first time in the software service recommendation field.
arXiv Detail & Related papers (2021-12-20T03:17:42Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - Req2Lib: A Semantic Neural Model for Software Library Recommendation [8.713783358744166]
We propose a novel neural approach called Req2Lib which recommends libraries given descriptions of the project requirement.
We use a Sequence-to-Sequence model to learn the library linked-usage information and semantic information of requirement descriptions in natural language.
Our preliminary evaluation demonstrates that Req2Lib can recommend libraries accurately.
arXiv Detail & Related papers (2020-05-24T14:37:07Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z) - Rich-Item Recommendations for Rich-Users: Exploiting Dynamic and Static
Side Information [20.176329366180934]
We study the problem of recommendation system where the users and items to be recommended are rich data structures with multiple entity types.
We provide a general formulation for the problem that captures the complexities of modern real-world recommendations.
We present two real-world case studies of our formulation and the MEDRES architecture.
arXiv Detail & Related papers (2020-01-28T17:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.