A Data-Centric Framework for Machine Listening Projects: Addressing Large-Scale Data Acquisition and Labeling through Active Learning
- URL: http://arxiv.org/abs/2405.18153v3
- Date: Tue, 08 Oct 2024 15:52:50 GMT
- Title: A Data-Centric Framework for Machine Listening Projects: Addressing Large-Scale Data Acquisition and Labeling through Active Learning
- Authors: Javier Naranjo-Alcazar, Jordi Grau-Haro, Ruben Ribes-Serrano, Pedro Zuccarello,
- Abstract summary: The paper emphasizes the importance of Active Learning (AL) using expert labelers over crowdsourcing.
AL is an iterative process combining human labelers and AI models to optimize the labeling budget by intelligently selecting samples for human review.
The framework successfully labeled 6540 ten-second audio samples over five months with a small team.
- Score: 0.42855555838080833
- License:
- Abstract: Machine Listening focuses on developing technologies to extract relevant information from audio signals. A critical aspect of these projects is the acquisition and labeling of contextualized data, which is inherently complex and requires specific resources and strategies. Despite the availability of some audio datasets, many are unsuitable for commercial applications. The paper emphasizes the importance of Active Learning (AL) using expert labelers over crowdsourcing, which often lacks detailed insights into dataset structures. AL is an iterative process combining human labelers and AI models to optimize the labeling budget by intelligently selecting samples for human review. This approach addresses the challenge of handling large, constantly growing datasets that exceed available computational resources and memory. The paper presents a comprehensive data-centric framework for Machine Listening projects, detailing the configuration of recording nodes, database structure, and labeling budget optimization in resource-constrained scenarios. Applied to an industrial port in Valencia, Spain, the framework successfully labeled 6540 ten-second audio samples over five months with a small team, demonstrating its effectiveness and adaptability to various resource availability situations. Acknowledgments: The participation of Javier Naranjo-Alcazar, Jordi Grau-Haro and Pedro Zuccarello in this research was funded by the Valencian Institute for Business Competitiveness (IVACE) and the FEDER funds by means of project Soroll-IA2 (IMDEEA/2023/91). The research carried out for this publication has been partially funded by the project STARRING-NEURO (PID2022-137048OA-C44) funded by the Ministry of Science, Innovation and Universities of Spain and the European Union.
Related papers
- Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo [0.5110571587151475]
'RetChemQA' is a benchmark dataset designed to evaluate the capabilities of machine learning models in the domain of reticular chemistry.
This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type.
The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group.
arXiv Detail & Related papers (2024-05-03T14:29:54Z) - How Much Data are Enough? Investigating Dataset Requirements for Patch-Based Brain MRI Segmentation Tasks [74.21484375019334]
Training deep neural networks reliably requires access to large-scale datasets.
To mitigate both the time and financial costs associated with model development, a clear understanding of the amount of data required to train a satisfactory model is crucial.
This paper proposes a strategic framework for estimating the amount of annotated data required to train patch-based segmentation networks.
arXiv Detail & Related papers (2024-04-04T13:55:06Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z) - AQUALLM: Audio Question Answering Data Generation Using Large Language
Models [2.2232550112727267]
We introduce a scalable AQA data generation pipeline, which relies on Large Language Models (LLMs)
We present three extensive and high-quality benchmark datasets for AQA.
Models trained on our datasets demonstrate enhanced generalizability when compared to models trained using human-annotated AQA data.
arXiv Detail & Related papers (2023-12-28T20:01:27Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning evaluated.
We propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning.
arXiv Detail & Related papers (2023-05-22T15:56:44Z) - A Survey on Low-Resource Neural Machine Translation [106.51056217748388]
We classify related works into three categories according to the auxiliary data they used.
We hope that our survey can help researchers to better understand this field and inspire them to design better algorithms.
arXiv Detail & Related papers (2021-07-09T06:26:38Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - The Relational Data Borg is Learning [3.228602524766158]
This paper overviews an approach that addresses machine learning over computation data as a database problem.
This approach has been already investigated for a number of supervised and unsupervised learning tasks.
arXiv Detail & Related papers (2020-08-18T11:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.