SSLChange: A Self-supervised Change Detection Framework Based on Domain Adaptation
- URL: http://arxiv.org/abs/2405.18224v1
- Date: Tue, 28 May 2024 14:34:51 GMT
- Title: SSLChange: A Self-supervised Change Detection Framework Based on Domain Adaptation
- Authors: Yitao Zhao, Turgay Celik, Nanqing Liu, Feng Gao, Heng-Chao Li,
- Abstract summary: SSLChange is a self-supervised contrastive framework for change detection.
It accomplishes self-learning only by taking a single-temporal sample.
It can be flexibly transferred to main-stream CD baselines.
- Score: 13.186214312979912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conventional remote sensing change detection (RS CD) procedures, extensive manual labeling for bi-temporal images is first required to maintain the performance of subsequent fully supervised training. However, pixel-level labeling for CD tasks is very complex and time-consuming. In this paper, we explore a novel self-supervised contrastive framework applicable to the RS CD task, which promotes the model to accurately capture spatial, structural, and semantic information through domain adapter and hierarchical contrastive head. The proposed SSLChange framework accomplishes self-learning only by taking a single-temporal sample and can be flexibly transferred to main-stream CD baselines. With self-supervised contrastive learning, feature representation pre-training can be performed directly based on the original data even without labeling. After a certain amount of labels are subsequently obtained, the pre-trained features will be aligned with the labels for fully supervised fine-tuning. Without introducing any additional data or labels, the performance of downstream baselines will experience a significant enhancement. Experimental results on 2 entire datasets and 6 diluted datasets show that our proposed SSLChange improves the performance and stability of CD baseline in data-limited situations. The code of SSLChange will be released at \url{https://github.com/MarsZhaoYT/SSLChange}
Related papers
- AdaSemiCD: An Adaptive Semi-Supervised Change Detection Method Based on Pseudo-Label Evaluation [0.0]
We present an adaptive dynamic semi-supervised learning method, AdaCD, to improve the use of pseudo-labels and optimize the training process.
Experimental results from LEVIR-CD, WHU-CD, and CDD datasets validate the efficacy and universality of our proposed adaptive training framework.
arXiv Detail & Related papers (2024-11-12T12:35:34Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - SwiMDiff: Scene-wide Matching Contrastive Learning with Diffusion
Constraint for Remote Sensing Image [21.596874679058327]
SwiMDiff is a novel self-supervised pre-training framework for remote sensing images.
It recalibrates labels to recognize data from the same scene as false negatives.
It seamlessly integrates contrastive learning (CL) with a diffusion model.
arXiv Detail & Related papers (2024-01-10T11:55:58Z) - Pixel-Level Change Detection Pseudo-Label Learning for Remote Sensing Change Captioning [28.3763053922823]
Methods for Remote Sensing Image Change Captioning (RSICC) perform well in simple scenes but exhibit poorer performance in complex scenes.
We believe pixel-level CD is significant for describing the differences between images through language.
Our method achieves state-of-the-art performance and validate that learning pixel-level CD pseudo-labels significantly contributes to change captioning.
arXiv Detail & Related papers (2023-12-23T17:58:48Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
We address the task of weakly-supervised few-shot image classification and segmentation, by leveraging a Vision Transformer (ViT)
Our proposed method takes token representations from the self-supervised ViT and leverages their correlations, via self-attention, to produce classification and segmentation predictions.
Experiments on Pascal-5i and COCO-20i demonstrate significant performance gains in a variety of supervision settings.
arXiv Detail & Related papers (2023-07-07T06:16:43Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - ProtoCon: Pseudo-label Refinement via Online Clustering and Prototypical
Consistency for Efficient Semi-supervised Learning [60.57998388590556]
ProtoCon is a novel method for confidence-based pseudo-labeling.
Online nature of ProtoCon allows it to utilise the label history of the entire dataset in one training cycle.
It delivers significant gains and faster convergence over state-of-the-art datasets.
arXiv Detail & Related papers (2023-03-22T23:51:54Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - CLS: Cross Labeling Supervision for Semi-Supervised Learning [9.929229055862491]
Cross Labeling Supervision ( CLS) is a framework that generalizes the typical pseudo-labeling process.
CLS allows the creation of both pseudo and complementary labels to support both positive and negative learning.
arXiv Detail & Related papers (2022-02-17T08:09:40Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.