Text-only Synthesis for Image Captioning
- URL: http://arxiv.org/abs/2405.18258v1
- Date: Tue, 28 May 2024 15:11:17 GMT
- Title: Text-only Synthesis for Image Captioning
- Authors: Qing Zhou, Junlin Huang, Qiang Li, Junyu Gao, Qi Wang,
- Abstract summary: We propose Text-only Synthesis for Image Captioning (ToCa)
We deconstruct caption text into structures and lexical words.
Massive captions that contain various patterns of lexical words are generated.
- Score: 26.774411180980994
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: From paired image-text training to text-only training for image captioning, the pursuit of relaxing the requirements for high-cost and large-scale annotation of good quality data remains consistent. In this paper, we propose Text-only Synthesis for Image Captioning (ToCa), which further advances this relaxation with fewer human labor and less computing time. Specifically, we deconstruct caption text into structures and lexical words, which serve as the fundamental components of the caption. By combining different structures and lexical words as inputs to the large language model, massive captions that contain various patterns of lexical words are generated. This method not only approaches the target domain but also surpasses it by generating new captions, thereby enhancing the zero-shot generalization ability of the model. Considering the different levels of data access in the real world, we define three synthesis scenarios: cross-domain synthesis, in-domain synthesis, and data-efficient synthesis. Experiments in these scenarios demonstrate the generalizability, transferability and practicability of ToCa with a nearly 5 CIDEr improvement for zero-shot cross-domain captioning and a maximum increase of over 20 CIDEr for data-efficient captioning.
Related papers
- CLIPS: An Enhanced CLIP Framework for Learning with Synthetic Captions [31.624782806591682]
We introduce two simple yet effective designs to better leverage richly described synthetic captions.
First, we observe a strong inverse effect in learning with synthetic captions.
Second, we incorporate an autoregressive captioner to mimic the recaptioning process.
arXiv Detail & Related papers (2024-11-25T18:49:02Z) - Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models [63.01630478059315]
Recent advancements in multimodal models highlight the value of rewritten captions for improving performance.
It is not clear whether synthetic captions and their interaction with original web-crawled AltTexts in pre-training is still not well understood.
We propose a novel, controllable, and scalable captioning pipeline designed to generate diverse caption formats tailored to various multimodal models.
arXiv Detail & Related papers (2024-10-03T17:54:52Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
We introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis.
This dataset includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles.
We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders.
arXiv Detail & Related papers (2023-08-10T17:41:19Z) - Improving Multimodal Datasets with Image Captioning [65.74736570293622]
We study how generated captions can increase the utility of web-scraped datapoints with nondescript text.
Our experiments with using generated captions at DataComp's large scale (1.28B image-text pairs) offer insights into the limitations of synthetic text.
arXiv Detail & Related papers (2023-07-19T17:47:12Z) - Improving Image Captioning Descriptiveness by Ranking and LLM-based
Fusion [17.99150939602917]
State-of-The-Art (SoTA) image captioning models often rely on the Microsoft COCO (MS-COCO) dataset for training.
We present a novel approach to address previous challenges by showcasing how captions generated from different SoTA models can be effectively fused.
arXiv Detail & Related papers (2023-06-20T15:13:02Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
Most vision-language foundation models employ image-text datasets for pretraining.
We propose COSA, a COncatenated SAmple pretrained vision-language foundation model.
We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining.
This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus.
arXiv Detail & Related papers (2023-06-15T12:29:42Z) - Image Captioning with Multi-Context Synthetic Data [16.961112970612447]
Large models have excelled in producing high-quality images and text.
We present an innovative pipeline that introduces multi-context data generation.
Our model is exclusively trained on synthetic image-text pairs crafted through this process.
arXiv Detail & Related papers (2023-05-29T13:18:59Z) - Injecting Semantic Concepts into End-to-End Image Captioning [61.41154537334627]
We propose a pure vision transformer-based image captioning model, dubbed as ViTCAP, in which grid representations are used without extracting the regional features.
For improved performance, we introduce a novel Concept Token Network (CTN) to predict the semantic concepts and then incorporate them into the end-to-end captioning.
In particular, the CTN is built on the basis of a vision transformer and is designed to predict the concept tokens through a classification task.
arXiv Detail & Related papers (2021-12-09T22:05:05Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.