Stagewise Boosting Distributional Regression
- URL: http://arxiv.org/abs/2405.18288v1
- Date: Tue, 28 May 2024 15:40:39 GMT
- Title: Stagewise Boosting Distributional Regression
- Authors: Mattias Wetscher, Johannes Seiler, Reto Stauffer, Nikolaus Umlauf,
- Abstract summary: We propose a stagewise boosting-type algorithm for distributional regression.
We extend it with a novel regularization method, correlation filtering, to provide additional stability.
Besides the advantage of processing large datasets, the nature of the approximations can lead to better results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forward stagewise regression is a simple algorithm that can be used to estimate regularized models. The updating rule adds a small constant to a regression coefficient in each iteration, such that the underlying optimization problem is solved slowly with small improvements. This is similar to gradient boosting, with the essential difference that the step size is determined by the product of the gradient and a step length parameter in the latter algorithm. One often overlooked challenge in gradient boosting for distributional regression is the issue of a vanishing small gradient, which practically halts the algorithm's progress. We show that gradient boosting in this case oftentimes results in suboptimal models, especially for complex problems certain distributional parameters are never updated due to the vanishing gradient. Therefore, we propose a stagewise boosting-type algorithm for distributional regression, combining stagewise regression ideas with gradient boosting. Additionally, we extend it with a novel regularization method, correlation filtering, to provide additional stability when the problem involves a large number of covariates. Furthermore, the algorithm includes best-subset selection for parameters and can be applied to big data problems by leveraging stochastic approximations of the updating steps. Besides the advantage of processing large datasets, the stochastic nature of the approximations can lead to better results, especially for complex distributions, by reducing the risk of being trapped in a local optimum. The performance of our proposed stagewise boosting distributional regression approach is investigated in an extensive simulation study and by estimating a full probabilistic model for lightning counts with data of more than 9.1 million observations and 672 covariates.
Related papers
- Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Comparing Classes of Estimators: When does Gradient Descent Beat Ridge
Regression in Linear Models? [46.01087792062936]
We compare classes of estimators via the relative performance of the emphbest method in the class
This allows us to rigorously quantify the tuning sensitivity of learning algorithms.
arXiv Detail & Related papers (2021-08-26T16:01:37Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Robust Regression Revisited: Acceleration and Improved Estimation Rates [25.54653340884806]
We study fast algorithms for statistical regression problems under the strong contamination model.
The goal is to approximately optimize a generalized linear model (GLM) given adversarially corrupted samples.
We present nearly-linear time algorithms for robust regression problems with improved runtime or estimation guarantees.
arXiv Detail & Related papers (2021-06-22T17:21:56Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples.
The goal is to design a procedure which attains the optimal sub-gaussian error bound even though the data have only finite moments.
arXiv Detail & Related papers (2020-07-12T19:33:50Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Carath\'eodory Sampling for Stochastic Gradient Descent [79.55586575988292]
We present an approach that is inspired by classical results of Tchakaloff and Carath'eodory about measure reduction.
We adaptively select the descent steps where the measure reduction is carried out.
We combine this with Block Coordinate Descent so that measure reduction can be done very cheaply.
arXiv Detail & Related papers (2020-06-02T17:52:59Z) - Robust Boosting for Regression Problems [0.0]
Gradient boosting algorithms construct a regression predictor using a linear combination of base learners''
The robust boosting algorithm is based on a two-stage approach, similar to boosting is done for robust linear regression.
When no atypical observations are present, the robust boosting approach works as well as a standard gradient boosting with a squared loss.
arXiv Detail & Related papers (2020-02-06T01:12:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.