Multi-modal Generation via Cross-Modal In-Context Learning
- URL: http://arxiv.org/abs/2405.18304v1
- Date: Tue, 28 May 2024 15:58:31 GMT
- Title: Multi-modal Generation via Cross-Modal In-Context Learning
- Authors: Amandeep Kumar, Muzammal Naseer, Sanath Narayan, Rao Muhammad Anwer, Salman Khan, Hisham Cholakkal,
- Abstract summary: We propose a Multi-modal Generation via Cross-Modal In-Context Learning (MGCC) method that generates novel images from complex multimodal prompt sequences.
Our MGCC demonstrates a diverse range of multimodal capabilities, like novel image generation, the facilitation of multimodal dialogue, and generation of texts.
- Score: 50.45304937804883
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we study the problem of generating novel images from complex multimodal prompt sequences. While existing methods achieve promising results for text-to-image generation, they often struggle to capture fine-grained details from lengthy prompts and maintain contextual coherence within prompt sequences. Moreover, they often result in misaligned image generation for prompt sequences featuring multiple objects. To address this, we propose a Multi-modal Generation via Cross-Modal In-Context Learning (MGCC) method that generates novel images from complex multimodal prompt sequences by leveraging the combined capabilities of large language models (LLMs) and diffusion models. Our MGCC comprises a novel Cross-Modal Refinement module to explicitly learn cross-modal dependencies between the text and image in the LLM embedding space, and a contextual object grounding module to generate object bounding boxes specifically targeting scenes with multiple objects. Our MGCC demonstrates a diverse range of multimodal capabilities, like novel image generation, the facilitation of multimodal dialogue, and generation of texts. Experimental evaluations on two benchmark datasets, demonstrate the effectiveness of our method. On Visual Story Generation (VIST) dataset with multimodal inputs, our MGCC achieves a CLIP Similarity score of $0.652$ compared to SOTA GILL $0.641$. Similarly, on Visual Dialogue Context (VisDial) having lengthy dialogue sequences, our MGCC achieves an impressive CLIP score of $0.660$, largely outperforming existing SOTA method scoring $0.645$. Code: https://github.com/VIROBO-15/MGCC
Related papers
- Hierarchical Multi-modal Transformer for Cross-modal Long Document Classification [74.45521856327001]
How to classify long documents with hierarchical structure texts and embedding images is a new problem.
We propose a novel approach called Hierarchical Multi-modal Transformer (HMT) for cross-modal long document classification.
Our approach uses a multi-modal transformer and a dynamic multi-scale multi-modal transformer to model the complex relationships between image features, and the section and sentence features.
arXiv Detail & Related papers (2024-07-14T07:12:25Z) - SEED-Story: Multimodal Long Story Generation with Large Language Model [66.37077224696242]
SEED-Story is a novel method that leverages a Multimodal Large Language Model (MLLM) to generate extended multimodal stories.
We propose multimodal attention sink mechanism to enable the generation of stories with up to 25 sequences (only 10 for training) in a highly efficient autoregressive manner.
We present a large-scale and high-resolution dataset named StoryStream for training our model and quantitatively evaluating the task of multimodal story generation in various aspects.
arXiv Detail & Related papers (2024-07-11T17:21:03Z) - TheaterGen: Character Management with LLM for Consistent Multi-turn Image Generation [44.740794326596664]
TheaterGen is a training-free framework that integrates large language models (LLMs) and text-to-image (T2I) models.
Within this framework, LLMs, acting as "Screenwriter", engage in multi-turn interaction, generating and managing a standardized prompt book.
With the effective management of prompt books and character images, TheaterGen significantly improves semantic and contextual consistency in synthesized images.
arXiv Detail & Related papers (2024-04-29T17:58:14Z) - DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation [46.085482021301516]
We propose DialogGen to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System.
It is composed of drawing prompt alignment, careful training data curation, and error correction.
Our experiments on DialogGen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
arXiv Detail & Related papers (2024-03-13T18:00:01Z) - MuLan: Multimodal-LLM Agent for Progressive and Interactive Multi-Object Diffusion [81.7514869897233]
We develop a training-free Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object.
MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion.
MuLan also adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt.
arXiv Detail & Related papers (2024-02-20T06:14:30Z) - UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion [36.06457895469353]
UNIMO-G is a conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs.
It excels in both text-to-image generation and zero-shot subject-driven synthesis.
arXiv Detail & Related papers (2024-01-24T11:36:44Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
This paper presents MM-Interleaved, an end-to-end generative model for interleaved image-text data.
It introduces a multi-scale and multi-image feature synchronizer module, allowing direct access to fine-grained image features in the previous context.
Experiments demonstrate the versatility of MM-Interleaved in recognizing visual details following multi-modal instructions and generating consistent images following both textual and visual conditions.
arXiv Detail & Related papers (2024-01-18T18:50:16Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - CMF: Cascaded Multi-model Fusion for Referring Image Segmentation [24.942658173937563]
We address the task of referring image segmentation (RIS), which aims at predicting a segmentation mask for the object described by a natural language expression.
We propose a simple yet effective Cascaded Multi-modal Fusion (CMF) module, which stacks multiple atrous convolutional layers in parallel.
Experimental results on four benchmark datasets demonstrate that our method outperforms most state-of-the-art methods.
arXiv Detail & Related papers (2021-06-16T08:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.