Policy Zooming: Adaptive Discretization-based Infinite-Horizon Average-Reward Reinforcement Learning
- URL: http://arxiv.org/abs/2405.18793v3
- Date: Sat, 01 Feb 2025 02:50:27 GMT
- Title: Policy Zooming: Adaptive Discretization-based Infinite-Horizon Average-Reward Reinforcement Learning
- Authors: Avik Kar, Rahul Singh,
- Abstract summary: We study Lipschitz MDPs in the infinite-horizon average-reward reinforcement learning (RL) setup.
We upper bound their regret as $tildemathcalObig(T1 - d_texteff.-1big)$, where $d_texteff. = dPhi_z+2$ for model-free algorithmtextitPZRL-MF and $d_texteff. = 2d_mathcalS + dPhi_z + 3$ for
- Score: 2.2984209387877628
- License:
- Abstract: We study Lipschitz MDPs in the infinite-horizon average-reward reinforcement learning (RL) setup in which an agent can play policies from a given set $\Phi$. The proposed algorithms ``zoom'' into ``promising'' regions of the policy space, thereby achieving adaptivity gains. We upper bound their regret as $\tilde{\mathcal{O}}\big(T^{1 - d_{\text{eff.}}^{-1}}\big)$, where $d_{\text{eff.}} = d^\Phi_z+2$ for model-free algorithm~\textit{PZRL-MF} and $d_{\text{eff.}} = 2d_\mathcal{S} + d^\Phi_z + 3$ for model-based algorithm~\textit{PZRL-MB}. Here, $d_\mathcal{S}$ is the dimension of the state space, and $d^\Phi_z$ is the zooming dimension. $d^\Phi_z$ is a problem-dependent quantity that depends not only on the underlying MDP, but also on the class $\Phi$. This yields us a low regret in case the agent competes against a low-complexity $\Phi$ (that has a small $d^\Phi_z$). We note that the preexisting notions of zooming dimension are inept at handling the non-episodic RL and do not yield adaptivity gains. The current work shows how to capture adaptivity gains for infinite-horizon average-reward RL in terms of $d^\Phi_z$. When specialized to the case of finite-dimensional policy space, we obtain that $d_{\text{eff.}}$ scales as the dimension of this space under mild technical conditions; and also obtain $d_{\text{eff.}} = 0$, or equivalently $\tilde{\mathcal{O}}(\sqrt{T})$ regret for \textit{PZRL-MF}, under a curvature condition on the average reward function that is commonly used in the multi-armed bandit (MAB) literature. Simulation experiments validate the gains arising due to adaptivity.
Related papers
- Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces [2.2984209387877628]
We develop an algorithm ZoRL that discretizes the state-action space adaptively and zooms into promising regions of the state-action space.
ZoRL outperforms other state-of-the-art algorithms in experiments.
arXiv Detail & Related papers (2024-10-25T18:14:42Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
arXiv Detail & Related papers (2024-02-01T07:21:32Z) - Horizon-free Reinforcement Learning in Adversarial Linear Mixture MDPs [72.40181882916089]
We show that our algorithm achieves an $tildeObig((d+log (|mathcalS|2 |mathcalA|))sqrtKbig)$ regret with full-information feedback, where $d$ is the dimension of a known feature mapping linearly parametrizing the unknown transition kernel of the MDP, $K$ is the number of episodes, $|mathcalS|$ and $|mathcalA|$ are the cardinalities of the state and action spaces
arXiv Detail & Related papers (2023-05-15T05:37:32Z) - Eluder-based Regret for Stochastic Contextual MDPs [43.19667415823089]
We present the E-UC$3$RL algorithm for regret minimization in Contextual Markov Decision Processes (CMDPs)
Our algorithm is efficient (assuming efficient offline regression oracles) and enjoys a regret guarantee of $ widetildeO(H3 sqrtT |S| |A|d_mathrmE(mathcalP)$.
arXiv Detail & Related papers (2022-11-27T20:38:47Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs)
Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model.
arXiv Detail & Related papers (2022-10-05T22:52:00Z) - On Submodular Contextual Bandits [92.45432756301231]
We consider the problem of contextual bandits where actions are subsets of a ground set and mean rewards are modeled by an unknown monotone submodular function.
We show that our algorithm efficiently randomizes around local optima of estimated functions according to the Inverse Gap Weighting strategy.
arXiv Detail & Related papers (2021-12-03T21:42:33Z) - Towards Instance-Optimal Offline Reinforcement Learning with Pessimism [34.54294677335518]
We study the offline reinforcement learning (offline RL) problem, where the goal is to learn a reward-maximizing policy in an unknown Markov Decision Process (MDP)
In this work, we analyze the Adaptive Pessimistic Value Iteration (APVI) algorithm and derive the suboptimality upper bound that nearly matches [ Oleft(sum_h=1Hsum_s_h,a_hdpistar_h(s_h,a_h)sqrtfracmathrmmathrmVar_
arXiv Detail & Related papers (2021-10-17T01:21:52Z) - Gap-Dependent Unsupervised Exploration for Reinforcement Learning [40.990467706237396]
We present an efficient algorithm for task-agnostic reinforcement learning.
The algorithm takes only $widetildemathcalO (1/epsilon cdot (H3SA / rho + H4 S2 A) )$ episodes of exploration.
We show that, information-theoretically, this bound is nearly tight for $rho Theta (1/(HS))$ and $H>1$.
arXiv Detail & Related papers (2021-08-11T20:42:46Z) - Model Selection with Near Optimal Rates for Reinforcement Learning with
General Model Classes [27.361399036211694]
We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem.
In the model selection framework, instead of $mathcalP*$, we are given $M$ nested families of transition kernels.
We show that textttARL-GEN obtains a regret of $TildemathcalO(d_mathcalE*H2+sqrtd_mathcalE* mathbbM* H2 T)$
arXiv Detail & Related papers (2021-07-13T05:00:38Z) - Nearly Minimax Optimal Reward-free Reinforcement Learning [88.75843804630772]
We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions.
We give a new efficient algorithm, textbfStaged textbfSampling + textbfTruncated textbfPlanning (algoname), which interacts with the environment at most $Oleft( fracS2Aepsilon2textpolylogleft(fracSAHepsilon2
arXiv Detail & Related papers (2020-10-12T17:51:19Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.