Federated Q-Learning with Reference-Advantage Decomposition: Almost Optimal Regret and Logarithmic Communication Cost
- URL: http://arxiv.org/abs/2405.18795v1
- Date: Wed, 29 May 2024 06:26:52 GMT
- Title: Federated Q-Learning with Reference-Advantage Decomposition: Almost Optimal Regret and Logarithmic Communication Cost
- Authors: Zhong Zheng, Haochen Zhang, Lingzhou Xue,
- Abstract summary: We propose a novel model-free federated Q-learning algorithm, termed FedQ-Advantage.
Our algorithm not only requires a lower logarithmic communication cost but also achieves an almost optimal regret, reaching the information bound up to a logarithmic factor and near-linear regret speedup compared to its single-agent counterpart when the time horizon is sufficiently large.
- Score: 4.895986534376972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider model-free federated reinforcement learning for tabular episodic Markov decision processes. Under the coordination of a central server, multiple agents collaboratively explore the environment and learn an optimal policy without sharing their raw data. Despite recent advances in federated Q-learning algorithms achieving near-linear regret speedup with low communication cost, existing algorithms only attain suboptimal regrets compared to the information bound. We propose a novel model-free federated Q-learning algorithm, termed FedQ-Advantage. Our algorithm leverages reference-advantage decomposition for variance reduction and operates under two distinct mechanisms: synchronization between the agents and the server, and policy update, both triggered by events. We prove that our algorithm not only requires a lower logarithmic communication cost but also achieves an almost optimal regret, reaching the information bound up to a logarithmic factor and near-linear regret speedup compared to its single-agent counterpart when the time horizon is sufficiently large.
Related papers
- The Sample-Communication Complexity Trade-off in Federated Q-Learning [31.644851830271755]
We investigate the trade-off between sample and communication complexities for the widely used class of intermittent communication algorithms.
We propose a new algorithm, called Fed-DVR-Q, which is the first federated Q-learning algorithm to simultaneously achieve order-optimal sample and communication complexities.
arXiv Detail & Related papers (2024-08-30T03:03:03Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - Federated Q-Learning: Linear Regret Speedup with Low Communication Cost [4.380110270510058]
We propose two federated Q-Learning algorithms termed as FedQ-Hoeffding and FedQ-Bernstein.
We show that the corresponding total regrets achieve a linear speedup compared with their single-agent counterparts when the time horizon is sufficiently large.
Those results rely on an event-triggered synchronization mechanism between the agents and the server.
arXiv Detail & Related papers (2023-12-22T19:14:09Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
Area Under Precision-Recall (AUPRC) was introduced as an effective metric.
Serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck.
We propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC.
arXiv Detail & Related papers (2023-08-06T06:51:32Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
We present a novel decentralized learning framework based on nonlinear gossiping (NGO), that enjoys an appealing finite-time consensus property to achieve better synchronization.
Our analysis on how communication delay and randomized chats affect learning further enables the derivation of practical variants.
arXiv Detail & Related papers (2021-11-04T15:36:25Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
We propose a learning-based framework, which unrolls decentralized optimization algorithms into graph neural networks (GNNs)
By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue.
Our convergence analysis reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent.
arXiv Detail & Related papers (2021-04-04T07:52:34Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.