SketchTriplet: Self-Supervised Scenarized Sketch-Text-Image Triplet Generation
- URL: http://arxiv.org/abs/2405.18801v1
- Date: Wed, 29 May 2024 06:43:49 GMT
- Title: SketchTriplet: Self-Supervised Scenarized Sketch-Text-Image Triplet Generation
- Authors: Zhenbei Wu, Qiang Wang, Jie Yang,
- Abstract summary: There continues to be a lack of large-scale paired datasets for scene sketches.
We propose a self-supervised method for scene sketch generation that does not rely on any existing scene sketch.
We contribute a large-scale dataset centered around scene sketches, comprising highly semantically consistent "text-sketch-image" triplets.
- Score: 6.39528707908268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of free-hand sketch presents a challenging problem. Despite the emergence of some large-scale sketch datasets, these datasets primarily consist of sketches at the single-object level. There continues to be a lack of large-scale paired datasets for scene sketches. In this paper, we propose a self-supervised method for scene sketch generation that does not rely on any existing scene sketch, enabling the transformation of single-object sketches into scene sketches. To accomplish this, we introduce a method for vector sketch captioning and sketch semantic expansion. Additionally, we design a sketch generation network that incorporates a fusion of multi-modal perceptual constraints, suitable for application in zero-shot image-to-sketch downstream task, demonstrating state-of-the-art performance through experimental validation. Finally, leveraging our proposed sketch-to-sketch generation method, we contribute a large-scale dataset centered around scene sketches, comprising highly semantically consistent "text-sketch-image" triplets. Our research confirms that this dataset can significantly enhance the capabilities of existing models in sketch-based image retrieval and sketch-controlled image synthesis tasks. We will make our dataset and code publicly available.
Related papers
- CustomSketching: Sketch Concept Extraction for Sketch-based Image
Synthesis and Editing [21.12815542848095]
Personalization techniques for large text-to-image (T2I) models allow users to incorporate new concepts from reference images.
Existing methods primarily rely on textual descriptions, leading to limited control over customized images.
We identify sketches as an intuitive and versatile representation that can facilitate such control.
arXiv Detail & Related papers (2024-02-27T15:52:59Z) - DiffSketching: Sketch Control Image Synthesis with Diffusion Models [10.172753521953386]
Deep learning models for sketch-to-image synthesis need to overcome the distorted input sketch without visual details.
Our model matches sketches through the cross domain constraints, and uses a classifier to guide the image synthesis more accurately.
Our model can beat GAN-based method in terms of generation quality and human evaluation, and does not rely on massive sketch-image datasets.
arXiv Detail & Related papers (2023-05-30T07:59:23Z) - SketchFFusion: Sketch-guided image editing with diffusion model [25.63913085329606]
Sketch-guided image editing aims to achieve local fine-tuning of the image based on the sketch information provided by the user.
We propose a sketch generation scheme that can preserve the main contours of an image and closely adhere to the actual sketch style drawn by the user.
arXiv Detail & Related papers (2023-04-06T15:54:18Z) - I Know What You Draw: Learning Grasp Detection Conditioned on a Few
Freehand Sketches [74.63313641583602]
We propose a method to generate a potential grasp configuration relevant to the sketch-depicted objects.
Our model is trained and tested in an end-to-end manner which is easy to be implemented in real-world applications.
arXiv Detail & Related papers (2022-05-09T04:23:36Z) - FS-COCO: Towards Understanding of Freehand Sketches of Common Objects in
Context [112.07988211268612]
We advance sketch research to scenes with the first dataset of freehand scene sketches, FS-COCO.
Our dataset comprises 10,000 freehand scene vector sketches with per point space-time information by 100 non-expert individuals.
We study for the first time the problem of the fine-grained image retrieval from freehand scene sketches and sketch captions.
arXiv Detail & Related papers (2022-03-04T03:00:51Z) - Sketch-BERT: Learning Sketch Bidirectional Encoder Representation from
Transformers by Self-supervised Learning of Sketch Gestalt [125.17887147597567]
We present a model of learning Sketch BiBERT Representation from Transformer (Sketch-BERT)
We generalize BERT to sketch domain, with the novel proposed components and pre-training algorithms.
We show that the learned representation of Sketch-BERT can help and improve the performance of the downstream tasks of sketch recognition, sketch retrieval, and sketch gestalt.
arXiv Detail & Related papers (2020-05-19T01:35:44Z) - SketchyCOCO: Image Generation from Freehand Scene Sketches [71.85577739612579]
We introduce the first method for automatic image generation from scene-level freehand sketches.
Key contribution is an attribute vector bridged Geneversarative Adrial Network called EdgeGAN.
We have built a large-scale composite dataset called SketchyCOCO to support and evaluate the solution.
arXiv Detail & Related papers (2020-03-05T14:54:10Z) - SketchDesc: Learning Local Sketch Descriptors for Multi-view
Correspondence [68.63311821718416]
We study the problem of multi-view sketch correspondence, where we take as input multiple freehand sketches with different views of the same object.
This problem is challenging since the visual features of corresponding points at different views can be very different.
We take a deep learning approach and learn a novel local sketch descriptor from data.
arXiv Detail & Related papers (2020-01-16T11:31:21Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
Sketch-based image editing aims to synthesize and modify photos based on the structural information provided by the human-drawn sketches.
Deep Plastic Surgery is a novel, robust and controllable image editing framework that allows users to interactively edit images using hand-drawn sketch inputs.
arXiv Detail & Related papers (2020-01-09T08:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.