Anomaly Detection by Context Contrasting
- URL: http://arxiv.org/abs/2405.18848v2
- Date: Mon, 14 Oct 2024 08:48:34 GMT
- Title: Anomaly Detection by Context Contrasting
- Authors: Alain Ryser, Thomas M. Sutter, Alexander Marx, Julia E. Vogt,
- Abstract summary: Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
- Score: 57.695202846009714
- License:
- Abstract: Anomaly detection focuses on identifying samples that deviate from the norm. When working with high-dimensional data such as images, a crucial requirement for detecting anomalous patterns is learning lower-dimensional representations that capture concepts of normality. Recent advances in self-supervised learning have shown great promise in this regard. However, many successful self-supervised anomaly detection methods assume prior knowledge about anomalies to create synthetic outliers during training. Yet, in real-world applications, we often do not know what to expect from unseen data, and we can solely leverage knowledge about normal data. In this work, we propose Con$_2$, which learns representations through context augmentations that allow us to observe samples from two distinct perspectives while keeping the invariances of normal data. Con$_2$ learns rich representations of context-augmented samples by clustering them according to their context while simultaneously aligning their positions across clusters. At test time, representations of anomalies that do not adhere to the invariances of normal data then deviate from their respective context cluster. Learning representations in such a way thus allows us to detect anomalies without making assumptions about anomalous data.
Related papers
- Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
Recent approaches have focused on leveraging domain-specific transformations or perturbations to generate synthetic anomalies from normal samples.
We introduce a novel domain-agnostic method that employs a set of conditional perturbators and a discriminator.
We demonstrate the superiority of our method over state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-16T08:15:23Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
Anomaly detection is to recognize samples that differ in some respect from the training observations.
Recent state-of-the-art deep learning-based anomaly detection methods suffer from high computational cost, complexity, unstable training procedures, and non-trivial implementation.
We leverage a simple learning procedure that trains a lightweight convolutional neural network, reaching state-of-the-art performance in anomaly detection.
arXiv Detail & Related papers (2022-07-03T20:11:51Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.