LetsMap: Unsupervised Representation Learning for Semantic BEV Mapping
- URL: http://arxiv.org/abs/2405.18852v1
- Date: Wed, 29 May 2024 08:03:36 GMT
- Title: LetsMap: Unsupervised Representation Learning for Semantic BEV Mapping
- Authors: Nikhil Gosala, Kürsat Petek, B Ravi Kiran, Senthil Yogamani, Paulo Drews-Jr, Wolfram Burgard, Abhinav Valada,
- Abstract summary: We propose the first unsupervised representation learning approach to generate semantic BEV maps from a monocular frontal view (FV) image in a label-efficient manner.
Our approach pretrains the network to independently reason about scene geometry and scene semantics using two disjoint neural pathways in an unsupervised manner.
We achieve label-free pretraining by exploiting spatial and temporal consistency of FV images to learn scene geometry while relying on a novel temporal masked autoencoder formulation to encode the scene representation.
- Score: 23.366388601110913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic Bird's Eye View (BEV) maps offer a rich representation with strong occlusion reasoning for various decision making tasks in autonomous driving. However, most BEV mapping approaches employ a fully supervised learning paradigm that relies on large amounts of human-annotated BEV ground truth data. In this work, we address this limitation by proposing the first unsupervised representation learning approach to generate semantic BEV maps from a monocular frontal view (FV) image in a label-efficient manner. Our approach pretrains the network to independently reason about scene geometry and scene semantics using two disjoint neural pathways in an unsupervised manner and then finetunes it for the task of semantic BEV mapping using only a small fraction of labels in the BEV. We achieve label-free pretraining by exploiting spatial and temporal consistency of FV images to learn scene geometry while relying on a novel temporal masked autoencoder formulation to encode the scene representation. Extensive evaluations on the KITTI-360 and nuScenes datasets demonstrate that our approach performs on par with the existing state-of-the-art approaches while using only 1% of BEV labels and no additional labeled data.
Related papers
- VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization [108.68014173017583]
Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car.
We propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space.
Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens
arXiv Detail & Related papers (2024-11-03T16:09:47Z) - Zero-BEV: Zero-shot Projection of Any First-Person Modality to BEV Maps [13.524499163234342]
We propose a new model capable of performing zero-shot projections of any modality available in a first person view to the corresponding BEV map.
We experimentally show that the model outperforms competing methods, in particular the widely used baseline resorting to monocular depth estimation.
arXiv Detail & Related papers (2024-02-21T14:50:24Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - Semi-Supervised Learning for Visual Bird's Eye View Semantic
Segmentation [16.3996408206659]
We present a novel semi-supervised framework for visual BEV semantic segmentation to boost performance by exploiting unlabeled images during the training.
A consistency loss that makes full use of unlabeled data is then proposed to constrain the model on not only semantic prediction but also the BEV feature.
Experiments on the nuScenes and Argoverse datasets show that our framework can effectively improve prediction accuracy.
arXiv Detail & Related papers (2023-08-28T12:23:36Z) - SkyEye: Self-Supervised Bird's-Eye-View Semantic Mapping Using Monocular
Frontal View Images [26.34702432184092]
We propose the first self-supervised approach for generating a Bird's-Eye-View (BEV) semantic map using a single monocular image from the frontal view (FV)
In training, we overcome the need for BEV ground truth annotations by leveraging the more easily available FV semantic annotations of video sequences.
Our approach performs on par with the state-of-the-art fully supervised methods and achieves competitive results using only 1% of direct supervision in the BEV.
arXiv Detail & Related papers (2023-02-08T18:02:09Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z) - GitNet: Geometric Prior-based Transformation for Birds-Eye-View
Segmentation [105.19949897812494]
Birds-eye-view (BEV) semantic segmentation is critical for autonomous driving.
We present a novel two-stage Geometry Prior-based Transformation framework named GitNet.
arXiv Detail & Related papers (2022-04-16T06:46:45Z) - NEAT: Neural Attention Fields for End-to-End Autonomous Driving [59.60483620730437]
We present NEural ATtention fields (NEAT), a novel representation that enables efficient reasoning for imitation learning models.
NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics.
In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert.
arXiv Detail & Related papers (2021-09-09T17:55:28Z) - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View
Images [4.449481309681663]
We present the first end-to-end learning approach for directly predicting dense panoptic segmentation maps in the Bird's-Eye-View (BEV) maps.
Our architecture follows the top-down paradigm and incorporates a novel dense transformer module.
We derive a mathematical formulation for the sensitivity of the FV-BEV transformation which allows us to intelligently weight pixels in the BEV space.
arXiv Detail & Related papers (2021-08-06T17:59:11Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.