Few-Shot Testing: Estimating Uncertainty of Memristive Deep Neural Networks Using One Bayesian Test Vector
- URL: http://arxiv.org/abs/2405.18894v1
- Date: Wed, 29 May 2024 08:53:16 GMT
- Title: Few-Shot Testing: Estimating Uncertainty of Memristive Deep Neural Networks Using One Bayesian Test Vector
- Authors: Soyed Tuhin Ahmed, Mehdi Tahoori,
- Abstract summary: We propose a test vector generation framework that can estimate the model uncertainty of NNs implemented on memristor-based CIM hardware.
Our method is evaluated on different model dimensions, tasks, fault rates, and variation noise to show that it can consistently achieve $100%$ coverage with only $0.024$ MB of memory overhead.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of deep learning algorithms such as neural networks (NNs) has increased tremendously recently, and they can achieve state-of-the-art performance in many domains. However, due to memory and computation resource constraints, implementing NNs on edge devices is a challenging task. Therefore, hardware accelerators such as computation-in-memory (CIM) with memristive devices have been developed to accelerate the most common operations, i.e., matrix-vector multiplication. However, due to inherent device properties, external environmental factors such as temperature, and an immature fabrication process, memristors suffer from various non-idealities, including defects and variations occurring during manufacturing and runtime. Consequently, there is a lack of complete confidence in the predictions made by the model. To improve confidence in NN predictions made by hardware accelerators in the presence of device non-idealities, in this paper, we propose a Bayesian test vector generation framework that can estimate the model uncertainty of NNs implemented on memristor-based CIM hardware. Compared to the conventional point estimate test vector generation method, our method is more generalizable across different model dimensions and requires storing only one test Bayesian vector in the hardware. Our method is evaluated on different model dimensions, tasks, fault rates, and variation noise to show that it can consistently achieve $100\%$ coverage with only $0.024$ MB of memory overhead.
Related papers
- Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
We propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in in-memory computing architectures.
Empirical results show a graceful degradation in inference accuracy, with an improvement of up to $58.11%$.
arXiv Detail & Related papers (2024-01-23T00:27:31Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Random-Set Neural Networks (RS-NN) [4.549947259731147]
We propose a novel Random-Set Neural Network (RS-NN) for classification.
RS-NN predicts belief functions rather than probability vectors over a set of classes.
It encodes the 'epistemic' uncertainty induced in machine learning by limited training sets.
arXiv Detail & Related papers (2023-07-11T20:00:35Z) - One-Shot Online Testing of Deep Neural Networks Based on Distribution
Shift Detection [0.6091702876917281]
We propose a emphone-shot testing approach that can test NNs accelerated on memristive crossbars with only one test vector.
Our approach can consistently achieve $100%$ fault coverage across several large topologies.
arXiv Detail & Related papers (2023-05-16T11:06:09Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - MemSE: Fast MSE Prediction for Noisy Memristor-Based DNN Accelerators [5.553959304125023]
We theoretically analyze the mean squared error of DNNs that use memristors to compute matrix-vector multiplications (MVM)
We take into account both the quantization noise, due to the necessity of reducing the DNN model size, and the programming noise, stemming from the variability during the programming of the memristance value.
The proposed method is almost two order of magnitude faster than Monte-Carlo simulation, thus making it possible to optimize the implementation parameters to achieve minimal error for a given power constraint.
arXiv Detail & Related papers (2022-05-03T18:10:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural
Accelerators with Application to Neural Architecture Search [25.841113960607334]
Emerging device-based Computing-in-memory (CiM) has been proved to be a promising candidate for high-energy efficiency deep neural network (DNN) computations.
Most emerging devices suffer uncertainty issues, resulting in a difference between actual data stored and the weight value it is designed to be.
This leads to an accuracy drop from trained models to actually deployed platforms.
arXiv Detail & Related papers (2021-07-06T23:29:36Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.