FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
- URL: http://arxiv.org/abs/2405.19055v3
- Date: Fri, 7 Jun 2024 03:03:41 GMT
- Title: FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
- Authors: Shuai Yuan, Guancong Lin, Lixian Zhang, Runmin Dong, Jinxiao Zhang, Shuang Chen, Juepeng Zheng, Jie Wang, Haohuan Fu,
- Abstract summary: We introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding.
FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations.
It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km2 across five urban areas in the southern and northern of China.
- Score: 6.833536116934201
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across the landscape and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km^2 across five urban areas in the southern and northern of China with different geographical features. The fine-grained land use pixel-wise annotations and high spatial-temporal resolution data provide a robust foundation for developing proper deep learning models to provide contextual insights on human activities and urbanization. To fully leverage FUSU, we propose a unified time-series architecture for both change detection and segmentation. We benchmark FUSU on various methods for several tasks. Dataset and code are available at: https://github.com/yuanshuai0914/FUSU.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.
The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.
Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
Wildfires pose significant threats to human and animal lives, ecosystems, and socio-economic stability.
In this work, we create and introduce a machine-learning ready dataset we name FLOGA (Forest wiLdfire Observations for the Greek Area)
This dataset is unique as it comprises of satellite imagery acquired before and after a wildfire event.
We use FLOGA to provide a thorough comparison of multiple Machine Learning and Deep Learning algorithms for the automatic extraction of burnt areas.
arXiv Detail & Related papers (2023-11-06T18:42:05Z) - FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From
Multi-Source Optical Imagery [4.9687851703152806]
We introduce the French Land cover from Aerospace ImageRy (FLAIR), an extensive dataset from the French National Institute of Geographical and Forest Information (IGN)
FLAIR contains high-resolution aerial imagery with a ground sample distance of 20 cm and over 20 billion individually labeled pixels for precise land-cover classification.
The dataset also integrates temporal and spectral data from optical satellite time series.
arXiv Detail & Related papers (2023-10-20T07:55:12Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic
Segmentation [7.629717457706323]
LoveDA dataset contains 5987 HSR images with 166 annotated objects from three different cities.
LoveDA dataset is suitable for both land-cover semantic segmentation and unsupervised domain adaptation (UDA) tasks.
arXiv Detail & Related papers (2021-10-17T06:12:48Z) - Hi-UCD: A Large-scale Dataset for Urban Semantic Change Detection in
Remote Sensing Imagery [5.151973524974052]
Hi-UCD is a large scale benchmark dataset for urban change detection.
It can be used for detecting and analyzing refined urban changes.
We benchmark our dataset using some classic methods in binary and multi-class change detection.
arXiv Detail & Related papers (2020-11-06T09:20:54Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.