Rich-Observation Reinforcement Learning with Continuous Latent Dynamics
- URL: http://arxiv.org/abs/2405.19269v1
- Date: Wed, 29 May 2024 17:02:49 GMT
- Title: Rich-Observation Reinforcement Learning with Continuous Latent Dynamics
- Authors: Yuda Song, Lili Wu, Dylan J. Foster, Akshay Krishnamurthy,
- Abstract summary: We introduce a new theoretical framework, RichCLD (Rich-Observation RL with Continuous Latent Dynamics), in which the agent performs control based on high-dimensional observations.
Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient.
- Score: 43.84391209459658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sample-efficiency and reliability remain major bottlenecks toward wide adoption of reinforcement learning algorithms in continuous settings with high-dimensional perceptual inputs. Toward addressing these challenges, we introduce a new theoretical framework, RichCLD (Rich-Observation RL with Continuous Latent Dynamics), in which the agent performs control based on high-dimensional observations, but the environment is governed by low-dimensional latent states and Lipschitz continuous dynamics. Our main contribution is a new algorithm for this setting that is provably statistically and computationally efficient. The core of our algorithm is a new representation learning objective; we show that prior representation learning schemes tailored to discrete dynamics do not naturally extend to the continuous setting. Our new objective is amenable to practical implementation, and empirically, we find that it compares favorably to prior schemes in a standard evaluation protocol. We further provide several insights into the statistical complexity of the RichCLD framework, in particular proving that certain notions of Lipschitzness that admit sample-efficient learning in the absence of rich observations are insufficient in the rich-observation setting.
Related papers
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Active Learning of Dynamics Using Prior Domain Knowledge in the Sampling Process [18.406992961818368]
We present an active learning algorithm for learning dynamics that leverages side information by explicitly incorporating prior domain knowledge into the sampling process.
Our proposed algorithm guides the exploration toward regions that demonstrate high empirical discrepancy between the observed data and an imperfect prior model of the dynamics derived from side information.
We rigorously prove that our active learning algorithm yields a consistent estimate of the underlying dynamics by providing an explicit rate of convergence for the maximum predictive variance.
arXiv Detail & Related papers (2024-03-25T22:20:45Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interact with their environment.
Existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards.
Our research leverages the Kalman paradigm to introduce a novel quantification and sampling algorithm called Langevinized Kalman TemporalTD.
arXiv Detail & Related papers (2024-03-19T22:18:19Z) - Hierarchical Decomposition of Prompt-Based Continual Learning:
Rethinking Obscured Sub-optimality [55.88910947643436]
Self-supervised pre-training is essential for handling vast quantities of unlabeled data in practice.
HiDe-Prompt is an innovative approach that explicitly optimize the hierarchical components with an ensemble of task-specific prompts and statistics.
Our experiments demonstrate the superior performance of HiDe-Prompt and its robustness to pre-training paradigms in continual learning.
arXiv Detail & Related papers (2023-10-11T06:51:46Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Learning the Linear Quadratic Regulator from Nonlinear Observations [135.66883119468707]
We introduce a new problem setting for continuous control called the LQR with Rich Observations, or RichLQR.
In our setting, the environment is summarized by a low-dimensional continuous latent state with linear dynamics and quadratic costs.
Our results constitute the first provable sample complexity guarantee for continuous control with an unknown nonlinearity in the system model and general function approximation.
arXiv Detail & Related papers (2020-10-08T07:02:47Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.