Using Contrastive Learning with Generative Similarity to Learn Spaces that Capture Human Inductive Biases
- URL: http://arxiv.org/abs/2405.19420v2
- Date: Tue, 01 Oct 2024 00:14:07 GMT
- Title: Using Contrastive Learning with Generative Similarity to Learn Spaces that Capture Human Inductive Biases
- Authors: Raja Marjieh, Sreejan Kumar, Declan Campbell, Liyi Zhang, Gianluca Bencomo, Jake Snell, Thomas L. Griffiths,
- Abstract summary: Humans rely on strong inductive biases to learn from few examples and abstract useful information from sensory data.
We introduce a notion of generative similarity whereby two datapoints are considered similar if they are likely to have been sampled from the same distribution.
We show that generative similarity can be used to define a contrastive learning objective even when its exact form is intractable.
- Score: 9.63129238638334
- License:
- Abstract: Humans rely on strong inductive biases to learn from few examples and abstract useful information from sensory data. Instilling such biases in machine learning models has been shown to improve their performance on various benchmarks including few-shot learning, robustness, and alignment. However, finding effective training procedures to achieve that goal can be challenging as psychologically-rich training data such as human similarity judgments are expensive to scale, and Bayesian models of human inductive biases are often intractable for complex, realistic domains. Here, we address this challenge by introducing a Bayesian notion of generative similarity whereby two datapoints are considered similar if they are likely to have been sampled from the same distribution. This measure can be applied to complex generative processes, including probabilistic programs. We show that generative similarity can be used to define a contrastive learning objective even when its exact form is intractable, enabling learning of spatial embeddings that express specific inductive biases. We demonstrate the utility of our approach by showing that it can be used to capture human inductive biases for geometric shapes, distinguish different abstract drawing styles that are parameterized by probabilistic programs, and capture abstract high-level categories that enable generalization.
Related papers
- Analyzing Generative Models by Manifold Entropic Metrics [8.477943884416023]
We introduce a novel set of tractable information-theoretic evaluation metrics.
We compare various normalizing flow architectures and $beta$-VAEs on the EMNIST dataset.
The most interesting finding of our experiments is a ranking of model architectures and training procedures in terms of their inductive bias to converge to aligned and disentangled representations during training.
arXiv Detail & Related papers (2024-10-25T09:35:00Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
We propose to model latent structures with a learned dynamic potential landscape.
Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations.
Our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines.
arXiv Detail & Related papers (2023-04-25T15:53:45Z) - Predicting Human Similarity Judgments Using Large Language Models [13.33450619901885]
We propose an efficient procedure for predicting similarity judgments based on text descriptions.
The number of descriptions required grows only linearly with the number of stimuli, drastically reducing the amount of data required.
We test this procedure on six datasets of naturalistic images and show that our models outperform previous approaches based on visual information.
arXiv Detail & Related papers (2022-02-09T21:09:25Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep
Learning [29.473503894240096]
We focus on the use of the categorical cross-entropy loss to model data that is not strictly categorical, but rather takes values on the simplex.
This practice is standard in neural network architectures with label smoothing and actor-mimic reinforcement learning, amongst others.
We propose probabilistically-inspired alternatives to these models, providing an approach that is more principled and theoretically appealing.
arXiv Detail & Related papers (2020-11-10T16:44:35Z) - Bias-Awareness for Zero-Shot Learning the Seen and Unseen [47.09887661463657]
Generalized zero-shot learning recognizes inputs from both seen and unseen classes.
We propose a bias-aware learner to map inputs to a semantic embedding space for generalized zero-shot learning.
arXiv Detail & Related papers (2020-08-25T17:38:40Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
We propose to solve a few-shot (or low-shot) visual reasoning problem, by resorting to analogical reasoning.
We extract structural relationships between elements in both domains, and enforce them to be as similar as possible with analogical learning.
We validate our method on RAVEN dataset, on which it outperforms state-of-the-art method, with larger gains when the training data is scarce.
arXiv Detail & Related papers (2020-07-23T14:00:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.