Deep Grokking: Would Deep Neural Networks Generalize Better?
- URL: http://arxiv.org/abs/2405.19454v1
- Date: Wed, 29 May 2024 19:05:11 GMT
- Title: Deep Grokking: Would Deep Neural Networks Generalize Better?
- Authors: Simin Fan, Razvan Pascanu, Martin Jaggi,
- Abstract summary: Grokking refers to a sharp rise of the network's generalization accuracy on the test set.
We find that deep neural networks can be more susceptible to grokking than its shallower counterparts.
We also observe an intriguing multi-stage generalization phenomenon when increase the depth of the model.
- Score: 51.24007462968805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research on the grokking phenomenon has illuminated the intricacies of neural networks' training dynamics and their generalization behaviors. Grokking refers to a sharp rise of the network's generalization accuracy on the test set, which occurs long after an extended overfitting phase, during which the network perfectly fits the training set. While the existing research primarily focus on shallow networks such as 2-layer MLP and 1-layer Transformer, we explore grokking on deep networks (e.g. 12-layer MLP). We empirically replicate the phenomenon and find that deep neural networks can be more susceptible to grokking than its shallower counterparts. Meanwhile, we observe an intriguing multi-stage generalization phenomenon when increase the depth of the MLP model where the test accuracy exhibits a secondary surge, which is scarcely seen on shallow models. We further uncover compelling correspondences between the decreasing of feature ranks and the phase transition from overfitting to the generalization stage during grokking. Additionally, we find that the multi-stage generalization phenomenon often aligns with a double-descent pattern in feature ranks. These observations suggest that internal feature rank could serve as a more promising indicator of the model's generalization behavior compared to the weight-norm. We believe our work is the first one to dive into grokking in deep neural networks, and investigate the relationship of feature rank and generalization performance.
Related papers
- How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Network Degeneracy as an Indicator of Training Performance: Comparing
Finite and Infinite Width Angle Predictions [3.04585143845864]
We show that as networks get deeper and deeper, they are more susceptible to becoming degenerate.
We use a simple algorithm that can accurately predict the level of degeneracy for any given fully connected ReLU network architecture.
arXiv Detail & Related papers (2023-06-02T13:02:52Z) - A Tale of Two Circuits: Grokking as Competition of Sparse and Dense
Subnetworks [1.5297569497776375]
We study the internal structure of networks undergoing grokking on the sparse parity task.
We find that the grokking phase transition corresponds to the emergence of a sparse subnetwork that dominates model predictions.
arXiv Detail & Related papers (2023-03-21T14:17:29Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Contrasting random and learned features in deep Bayesian linear
regression [12.234742322758418]
We study how the ability to learn affects the generalization performance of a simple class of models.
By comparing deep random feature models to deep networks in which all layers are trained, we provide a detailed characterization of the interplay between width, depth, data density, and prior mismatch.
arXiv Detail & Related papers (2022-03-01T15:51:29Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
We study the phenomenon of "double descent" of the generalization error.
We find that double descent can be attributed to distinct features being learned at different scales.
arXiv Detail & Related papers (2021-12-06T18:17:08Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - Neural Pruning via Growing Regularization [82.9322109208353]
We extend regularization to tackle two central problems of pruning: pruning schedule and weight importance scoring.
Specifically, we propose an L2 regularization variant with rising penalty factors and show it can bring significant accuracy gains.
The proposed algorithms are easy to implement and scalable to large datasets and networks in both structured and unstructured pruning.
arXiv Detail & Related papers (2020-12-16T20:16:28Z) - Early Stopping in Deep Networks: Double Descent and How to Eliminate it [30.61588337557343]
We show that epoch-wise double descent arises because different parts of the network are learned at different epochs.
We study two standard convolutional networks empirically and show that eliminating epoch-wise double descent through adjusting stepsizes of different layers improves the early stopping performance significantly.
arXiv Detail & Related papers (2020-07-20T13:43:33Z) - Relationship between manifold smoothness and adversarial vulnerability
in deep learning with local errors [2.7834038784275403]
We study the origin of the adversarial vulnerability in artificial neural networks.
Our study reveals that a high generalization accuracy requires a relatively fast power-law decay of the eigen-spectrum of hidden representations.
arXiv Detail & Related papers (2020-07-04T08:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.