Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models
- URL: http://arxiv.org/abs/2405.19598v2
- Date: Thu, 30 Jan 2025 02:48:45 GMT
- Title: Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models
- Authors: Fujiao Ji, Kiho Lee, Hyungjoon Koo, Wenhao You, Euijin Choo, Hyoungshick Kim, Doowon Kim,
- Abstract summary: Phishing attacks elaborately replicate the visual appearance of legitimate websites to deceive victims.
Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored.
We comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites.
- Score: 10.334870703744498
- License:
- Abstract: Phishing attacks pose a significant threat to Internet users, with cybercriminals elaborately replicating the visual appearance of legitimate websites to deceive victims. Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored. In this paper, we comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites. Our analyses of the effectiveness reveal that while certain visual similarity-based models achieve high accuracy on curated datasets in the experimental settings, they exhibit notably low performance on real-world datasets, highlighting the importance of real-world evaluation. Furthermore, we find that the attackers evade the detectors mainly in three ways: (1) directly attacking the model pipelines, (2) mimicking benign logos, and (3) employing relatively simple strategies such as eliminating logos from screenshots. To statistically assess the resilience and robustness of existing models against adversarial attacks, we categorize the strategies attackers employ into visible and perturbation-based manipulations and apply them to website logos. We then evaluate the models' robustness using these adversarial samples. Our findings reveal potential vulnerabilities in several models, emphasizing the need for more robust visual similarity techniques capable of withstanding sophisticated evasion attempts. We provide actionable insights for enhancing the security of phishing defense systems, encouraging proactive actions.
Related papers
- Countering Backdoor Attacks in Image Recognition: A Survey and Evaluation of Mitigation Strategies [10.801476967873173]
We present a review of existing mitigation strategies designed to counter backdoor attacks in image recognition.
We conduct an extensive benchmarking of sixteen state-of-the-art approaches against eight distinct backdoor attacks.
Our results, derived from 122,236 individual experiments, indicate that while many approaches provide some level of protection, their performance can vary considerably.
arXiv Detail & Related papers (2024-11-17T23:30:01Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
We analyze attack techniques and propose a robust defense approach.
We successfully reduce model confidence by over 20% using adversarial patch attacks that exploit object shape, texture and position.
Our inpainting defense approach significantly enhances model resilience, achieving high accuracy and reliable localization despite the adversarial attacks.
arXiv Detail & Related papers (2024-03-04T13:32:48Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - SAD: Saliency-based Defenses Against Adversarial Examples [0.9786690381850356]
adversarial examples drift model predictions away from the original intent of the network.
In this work, we propose a visual saliency based approach to cleaning data affected by an adversarial attack.
arXiv Detail & Related papers (2020-03-10T15:55:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.