SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems
- URL: http://arxiv.org/abs/2405.19653v1
- Date: Thu, 30 May 2024 03:12:04 GMT
- Title: SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems
- Authors: Patrick Emami, Zhaonan Li, Saumya Sinha, Truc Nguyen,
- Abstract summary: We introduce a learning framework for surrogate modeling where language is used to interface with the underlying system being simulated.
We call a language description of a system a "system caption", or SysCap.
We train multimodal text and timeseries regression models for two real-world simulators of complex energy systems.
- Score: 4.049850026698639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven simulation surrogates help computational scientists study complex systems. They can also help inform impactful policy decisions. We introduce a learning framework for surrogate modeling where language is used to interface with the underlying system being simulated. We call a language description of a system a "system caption", or SysCap. To address the lack of datasets of paired natural language SysCaps and simulation runs, we use large language models (LLMs) to synthesize high-quality captions. Using our framework, we train multimodal text and timeseries regression models for two real-world simulators of complex energy systems. Our experiments demonstrate the feasibility of designing language interfaces for real-world surrogate models at comparable accuracy to standard baselines. We qualitatively and quantitatively show that SysCaps unlock text-prompt-style surrogate modeling and new generalization abilities beyond what was previously possible. We will release the generated SysCaps datasets and our code to support follow-on studies.
Related papers
- LANGTRAJ: Diffusion Model and Dataset for Language-Conditioned Trajectory Simulation [94.84458417662404]
LangTraj is a language-conditioned scene-diffusion model that simulates the joint behavior of all agents in traffic scenarios.
By conditioning on natural language inputs, LangTraj provides flexible and intuitive control over interactive behaviors.
LangTraj demonstrates strong performance in realism, language controllability, and language-conditioned safety-critical simulation.
arXiv Detail & Related papers (2025-04-15T17:14:06Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.
We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.
Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) system.
Generative Semantic Extractor (GSE) at the transmitter converts semantically sparse talking-face videos into texts with high information density.
Private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction.
Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video.
arXiv Detail & Related papers (2024-11-06T12:45:46Z) - Generating Driving Simulations via Conversation [20.757088470174452]
We design a natural language interface to assist a non-coding domain expert in synthesising the desired scenarios and vehicle behaviours.
We show that using it to convert utterances to the symbolic program is feasible, despite the very small training dataset.
Human experiments show that dialogue is critical to successful simulation generation, leading to a 4.5 times higher success rate than a generation without engaging in extended conversation.
arXiv Detail & Related papers (2024-10-13T13:07:31Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Human-Centric Autonomous Systems With LLMs for User Command Reasoning [16.452638202694246]
We propose to leverage the reasoning capabilities of Large Language Models to infer system requirements from in-cabin users' commands.
We confirm the general ability of LLMs to understand and reason about prompts but underline that their effectiveness is conditioned on the quality of both the LLM model and the design of appropriate sequential prompts.
arXiv Detail & Related papers (2023-11-14T14:42:28Z) - Dialogue-based generation of self-driving simulation scenarios using
Large Language Models [14.86435467709869]
Simulation is an invaluable tool for developing and evaluating controllers for self-driving cars.
Current simulation frameworks are driven by highly-specialist domain specific languages.
There is often a gap between a concise English utterance and the executable code that captures the user's intent.
arXiv Detail & Related papers (2023-10-26T13:07:01Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
This work proposes the first to our knowledge systematic study of formality detection methods based on statistical, neural-based, and Transformer-based machine learning methods.
We conducted three types of experiments -- monolingual, multilingual, and cross-lingual.
The study shows the overcome of Char BiLSTM model over Transformer-based ones for the monolingual and multilingual formality classification task.
arXiv Detail & Related papers (2022-04-19T16:23:07Z) - From Natural Language to Simulations: Applying GPT-3 Codex to Automate
Simulation Modeling of Logistics Systems [0.0]
This work is the first attempt to apply Natural Language Processing to automate the development of simulation models of systems vitally important for logistics.
We demonstrated that the framework built on top of the fine-tuned GPT-3 Codex, a Transformer-based language model, could produce functionally valid simulations of queuing and inventory control systems given the verbal description.
arXiv Detail & Related papers (2022-02-24T14:01:50Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
The ability of Transformers to perform with precision a variety of tasks such as question answering, Natural Language Inference (NLI) or summarising, have enable them to be ranked as one of the best paradigms to address this kind of tasks at present.
NLI is one of the best scenarios to test these architectures, due to the knowledge required to understand complex sentences and established a relation between a hypothesis and a premise.
In this paper, we propose a new architecture, siamese multilingual transformer, to efficiently align multilingual embeddings for Natural Language Inference.
arXiv Detail & Related papers (2021-03-17T13:23:53Z) - Speech Command Recognition in Computationally Constrained Environments
with a Quadratic Self-organized Operational Layer [92.37382674655942]
We propose a network layer to enhance the speech command recognition capability of a lightweight network.
The employed method borrows the ideas of Taylor expansion and quadratic forms to construct a better representation of features in both input and hidden layers.
This richer representation results in recognition accuracy improvement as shown by extensive experiments on Google speech commands (GSC) and synthetic speech commands (SSC) datasets.
arXiv Detail & Related papers (2020-11-23T14:40:18Z) - Investigation of learning abilities on linguistic features in
sequence-to-sequence text-to-speech synthesis [48.151894340550385]
Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes.
We investigate under what conditions the neural sequence-to-sequence TTS can work well in Japanese and English.
arXiv Detail & Related papers (2020-05-20T23:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.