RTGen: Generating Region-Text Pairs for Open-Vocabulary Object Detection
- URL: http://arxiv.org/abs/2405.19854v1
- Date: Thu, 30 May 2024 09:03:23 GMT
- Title: RTGen: Generating Region-Text Pairs for Open-Vocabulary Object Detection
- Authors: Fangyi Chen, Han Zhang, Zhantao Yang, Hao Chen, Kai Hu, Marios Savvides,
- Abstract summary: Open-vocabulary object detection requires solid modeling of the region-semantic relationship.
We propose RTGen to generate scalable open-vocabulary region-text pairs.
- Score: 20.630629383286262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary object detection (OVD) requires solid modeling of the region-semantic relationship, which could be learned from massive region-text pairs. However, such data is limited in practice due to significant annotation costs. In this work, we propose RTGen to generate scalable open-vocabulary region-text pairs and demonstrate its capability to boost the performance of open-vocabulary object detection. RTGen includes both text-to-region and region-to-text generation processes on scalable image-caption data. The text-to-region generation is powered by image inpainting, directed by our proposed scene-aware inpainting guider for overall layout harmony. For region-to-text generation, we perform multiple region-level image captioning with various prompts and select the best matching text according to CLIP similarity. To facilitate detection training on region-text pairs, we also introduce a localization-aware region-text contrastive loss that learns object proposals tailored with different localization qualities. Extensive experiments demonstrate that our RTGen can serve as a scalable, semantically rich, and effective source for open-vocabulary object detection and continue to improve the model performance when more data is utilized, delivering superior performance compared to the existing state-of-the-art methods.
Related papers
- Visual Text Generation in the Wild [67.37458807253064]
We propose a visual text generator (termed SceneVTG) which can produce high-quality text images in the wild.
The proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability.
The generated images provide superior utility for tasks involving text detection and text recognition.
arXiv Detail & Related papers (2024-07-19T09:08:20Z) - LLMs Meet VLMs: Boost Open Vocabulary Object Detection with Fine-grained
Descriptors [58.75140338866403]
DVDet is a Descriptor-Enhanced Open Vocabulary Detector.
It transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training.
Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.
arXiv Detail & Related papers (2024-02-07T07:26:49Z) - CLIM: Contrastive Language-Image Mosaic for Region Representation [58.05870131126816]
Contrastive Language-Image Mosaic (CLIM) is a novel approach for aligning region and text representations.
CLIM consistently improves different open-vocabulary object detection methods.
It can effectively enhance the region representation of vision-language models.
arXiv Detail & Related papers (2023-12-18T17:39:47Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
Navigating drones through natural language commands remains challenging due to the dearth of accessible multi-modal datasets.
We introduce GeoText-1652, a new natural language-guided geo-localization benchmark.
This dataset is systematically constructed through an interactive human-computer process.
arXiv Detail & Related papers (2023-11-21T17:52:30Z) - SpaText: Spatio-Textual Representation for Controllable Image Generation [61.89548017729586]
SpaText is a new method for text-to-image generation using open-vocabulary scene control.
In addition to a global text prompt that describes the entire scene, the user provides a segmentation map.
We show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-conditional-based.
arXiv Detail & Related papers (2022-11-25T18:59:10Z) - RegionCLIP: Region-based Language-Image Pretraining [94.29924084715316]
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved impressive results on image classification.
We propose a new method called RegionCLIP that significantly extends CLIP to learn region-level visual representations.
Our method significantly outperforms the state of the art by 3.8 AP50 and 2.2 AP for novel categories on COCO and LVIS datasets.
arXiv Detail & Related papers (2021-12-16T18:39:36Z) - Arbitrary-Shaped Text Detection withAdaptive Text Region Representation [1.4546816913520362]
We propose a novel text regionrepresentation method, with a robust pipeline, which can precisely detect dense adjacent text instances.
We demonstrate that our new textregion representation is effective, and that the pipeline can precisely detect closely adjacent text instances ofarbitrary shapes.
arXiv Detail & Related papers (2021-04-01T07:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.