Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning
- URL: http://arxiv.org/abs/2405.19885v2
- Date: Wed, 5 Jun 2024 09:03:03 GMT
- Title: Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning
- Authors: Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, Jun Zhu,
- Abstract summary: Transformer has shown promise in reinforcement learning to model time-varying features.
It still suffers from the issues of low data efficiency and high inference latency.
In this paper, we propose to investigate the task from a new perspective of the frequency domain.
- Score: 42.862705980039784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer has shown promise in reinforcement learning to model time-varying features for obtaining generalized low-level robot policies on diverse robotics datasets in embodied learning. However, it still suffers from the issues of low data efficiency and high inference latency. In this paper, we propose to investigate the task from a new perspective of the frequency domain. We first observe that the energy density in the frequency domain of a robot's trajectory is mainly concentrated in the low-frequency part. Then, we present the Fourier Controller Network (FCNet), a new network that uses Short-Time Fourier Transform (STFT) to extract and encode time-varying features through frequency domain interpolation. In order to do real-time decision-making, we further adopt FFT and Sliding DFT methods in the model architecture to achieve parallel training and efficient recurrent inference. Extensive results in both simulated (e.g., D4RL) and real-world environments (e.g., robot locomotion) demonstrate FCNet's substantial efficiency and effectiveness over existing methods such as Transformer, e.g., FCNet outperforms Transformer on multi-environmental robotics datasets of all types of sizes (from 1.9M to 120M). The project page and code can be found https://thkkk.github.io/fcnet.
Related papers
- Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Fast-FNet: Accelerating Transformer Encoder Models via Efficient Fourier
Layers [0.0]
Transformer-based language models utilize the attention mechanism for substantial performance improvements in almost all natural language processing (NLP) tasks.
Recent works focused on eliminating the disadvantages of computational inefficiency and showed that transformer-based models can still reach competitive results without the attention layer.
A pioneering study proposed the FNet, which replaces the attention layer with the Fourier Transform (FT) in the transformer encoder architecture.
arXiv Detail & Related papers (2022-09-26T16:23:02Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z) - Efficient Trainable Front-Ends for Neural Speech Enhancement [22.313111311130665]
We present an efficient, trainable front-end based on the butterfly mechanism to compute the Fast Fourier Transform.
We show its accuracy and efficiency benefits for low-compute neural speech enhancement models.
arXiv Detail & Related papers (2020-02-20T01:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.