HOLMES: to Detect Adversarial Examples with Multiple Detectors
- URL: http://arxiv.org/abs/2405.19956v1
- Date: Thu, 30 May 2024 11:22:55 GMT
- Title: HOLMES: to Detect Adversarial Examples with Multiple Detectors
- Authors: Jing Wen,
- Abstract summary: HOLMES is able to distinguish textitunseen adversarial examples from multiple attacks with high accuracy and low false positive rates.
Our effective and inexpensive strategies neither modify original DNN models nor require its internal parameters.
- Score: 1.455585466338228
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks (DNNs) can easily be cheated by some imperceptible but purposeful noise added to images, and erroneously classify them. Previous defensive work mostly focused on retraining the models or detecting the noise, but has either shown limited success rates or been attacked by new adversarial examples. Instead of focusing on adversarial images or the interior of DNN models, we observed that adversarial examples generated by different algorithms can be identified based on the output of DNNs (logits). Logit can serve as an exterior feature to train detectors. Then, we propose HOLMES (Hierarchically Organized Light-weight Multiple dEtector System) to reinforce DNNs by detecting potential adversarial examples to minimize the threats they may bring in practical. HOLMES is able to distinguish \textit{unseen} adversarial examples from multiple attacks with high accuracy and low false positive rates than single detector systems even in an adaptive model. To ensure the diversity and randomness of detectors in HOLMES, we use two methods: training dedicated detectors for each label and training detectors with top-k logits. Our effective and inexpensive strategies neither modify original DNN models nor require its internal parameters. HOLMES is not only compatible with all kinds of learning models (even only with external APIs), but also complementary to other defenses to achieve higher detection rates (may also fully protect the system against various adversarial examples).
Related papers
- Detecting Adversarial Examples [24.585379549997743]
We propose a novel method to detect adversarial examples by analyzing the layer outputs of Deep Neural Networks.
Our method is highly effective, compatible with any DNN architecture, and applicable across different domains, such as image, video, and audio.
arXiv Detail & Related papers (2024-10-22T21:42:59Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - EMShepherd: Detecting Adversarial Samples via Side-channel Leakage [6.868995628617191]
Adversarial attacks have disastrous consequences for deep learning-empowered critical applications.
We propose a framework, EMShepherd, to capture electromagnetic traces of model execution, perform processing on traces and exploit them for adversarial detection.
We demonstrate that our air-gapped EMShepherd can effectively detect different adversarial attacks on a commonly used FPGA deep learning accelerator.
arXiv Detail & Related papers (2023-03-27T19:38:55Z) - Nowhere to Hide: A Lightweight Unsupervised Detector against Adversarial
Examples [14.332434280103667]
Adversarial examples are generated by adding slight but maliciously crafted perturbations to benign images.
In this paper, we propose an AutoEncoder-based Adversarial Examples detector.
We show empirically that the AEAE is unsupervised and inexpensive against the most state-of-the-art attacks.
arXiv Detail & Related papers (2022-10-16T16:29:47Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
We show that existing novelty detectors are susceptible to adversarial examples.
We propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples.
arXiv Detail & Related papers (2021-08-25T10:41:29Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.