Consistent Submodular Maximization
- URL: http://arxiv.org/abs/2405.19977v1
- Date: Thu, 30 May 2024 11:59:58 GMT
- Title: Consistent Submodular Maximization
- Authors: Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam,
- Abstract summary: maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning.
In this paper we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion and the goal is maintaining a constant approximation to the optimal solution while having a stable solution.
We provide algorithms in this setting with different trade-offs between consistency and approximation quality.
- Score: 27.266085572522847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning. In this paper we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion and the goal is maintaining a constant approximation to the optimal solution while having a stable solution (i.e., the number of changes between two consecutive solutions is bounded). We provide algorithms in this setting with different trade-offs between consistency and approximation quality. We also complement our theoretical results with an experimental analysis showing the effectiveness of our algorithms in real-world instances.
Related papers
- A Double Tracking Method for Optimization with Decentralized Generalized Orthogonality Constraints [4.6796315389639815]
Decentralized optimization problems are unsolvable in the presence of distributed constraints.
We introduce a novel algorithm that tracks the gradient of the objective function and the Jacobian of the constraint mapping simultaneously.
We present numerical results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-08T06:57:35Z) - Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm [0.0]
This paper introduces in detail a non-variational quantum algorithm designed to solve a wide range of optimisation problems.
The algorithm returns optimal and near-optimal solutions from repeated preparation and measurement of an amplified state.
arXiv Detail & Related papers (2024-07-29T13:54:28Z) - Optimizing Chance-Constrained Submodular Problems with Variable
Uncertainties [12.095075636344536]
We study chance-constrained submodular optimization problems, which capture a wide range of problems with constraints.
We present greedy algorithms that can obtain a high-quality solution, i.e., a constant approximation ratio to the given optimal solution.
arXiv Detail & Related papers (2023-09-23T04:48:49Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for
Solving Nonconvex Min-Max Problems [2.0305676256390934]
We characterize the finite-time performance of the continuous-time variant of simultaneous gradient descent-ascent algorithm.
Our results on the behavior of continuous-time algorithm may be used to enhance the convergence properties of its discrete-time counterpart.
arXiv Detail & Related papers (2021-12-17T15:51:04Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Minimax Optimization: The Case of Convex-Submodular [50.03984152441271]
Minimax problems extend beyond the continuous domain to mixed continuous-discrete domains or even fully discrete domains.
We introduce the class of convex-submodular minimax problems, where the objective is convex with respect to the continuous variable and submodular with respect to the discrete variable.
Our proposed algorithms are iterative and combine tools from both discrete and continuous optimization.
arXiv Detail & Related papers (2021-11-01T21:06:35Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
This paper presents a framework to tackle constrained optimization problems using deep Reinforcement Learning (RL)
We extend the Neural Combinatorial Optimization (NCO) theory in order to deal with constraints in its formulation.
In that context, the solution is iteratively constructed based on interactions with the environment.
arXiv Detail & Related papers (2020-06-22T03:13:07Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.