Federated Cross-Training Learners for Robust Generalization under Data Heterogeneity
- URL: http://arxiv.org/abs/2405.20046v2
- Date: Fri, 01 Aug 2025 16:35:34 GMT
- Title: Federated Cross-Training Learners for Robust Generalization under Data Heterogeneity
- Authors: Zhuang Qi, Lei Meng, Ruohan Zhang, Yu Wang, Xin Qi, Xiangxu Meng, Han Yu, Qiang Yang,
- Abstract summary: Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve generalization capability.<n>We argue that knowledge distillation from the personalized view preserves client-specific characteristics and expands the local knowledge base.<n>We show that FedCT alleviates knowledge from both local and global views, which enables it outperform state-of-the-art methods.
- Score: 27.97181776470323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve generalization capability. However, due to inherent differences in data distributions, the optimization goals of local models remain misaligned, and this mismatch continues to manifest as feature space heterogeneity even after cross-training. We argue that knowledge distillation from the personalized view preserves client-specific characteristics and expands the local knowledge base, while distillation from the global view provides consistent semantic anchors that facilitate feature alignment across clients. To achieve this goal, this paper presents a cross-training scheme, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies, which enhances collaborative advantages between clients and achieves an efficient federated learning process. The multi-view knowledge-guided representation learning module leverages fused prototypical knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange, as well as to ensure consistency between local and global knowledge. The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples. Extensive experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study. The results demonstrated that FedCT alleviates knowledge forgetting from both local and global views, which enables it outperform state-of-the-art methods.
Related papers
- FedSC: Federated Learning with Semantic-Aware Collaboration [12.366529890744822]
Federated learning (FL) aims to train models collaboratively across clients without sharing data for privacy-preserving.<n>We propose Federated Learning with Semantic-Aware Collaboration (FedSC) to capture client-specific and class-relevant knowledge across heterogeneous clients.
arXiv Detail & Related papers (2025-06-26T05:04:55Z) - Hierarchical Knowledge Structuring for Effective Federated Learning in Heterogeneous Environments [0.6144680854063939]
Federated learning enables collaborative model training across distributed entities while maintaining individual data privacy.<n>Recent efforts leverage logit-based knowledge aggregation and distillation to overcome these issues.<n>We propose a Hierarchical Knowledge Structuring (HKS) framework that formulates sample logits into a multi-granularity codebook.
arXiv Detail & Related papers (2025-04-04T15:06:02Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
We propose a novel and general method named Federated Self-supervised Learning with Feature-correlation based Aggregation (FedFoA)
Our insight is to utilize feature correlation to align the feature mappings and calibrate the local model updates across clients during their local training process.
We prove that FedFoA is a model-agnostic training framework and can be easily compatible with state-of-the-art unsupervised FL methods.
arXiv Detail & Related papers (2022-11-14T13:59:50Z) - Meta Knowledge Condensation for Federated Learning [65.20774786251683]
Existing federated learning paradigms usually extensively exchange distributed models at a central solver to achieve a more powerful model.
This would incur severe communication burden between a server and multiple clients especially when data distributions are heterogeneous.
Unlike existing paradigms, we introduce an alternative perspective to significantly decrease the communication cost in federate learning.
arXiv Detail & Related papers (2022-09-29T15:07:37Z) - Exploring Semantic Attributes from A Foundation Model for Federated
Learning of Disjoint Label Spaces [46.59992662412557]
In this work, we consider transferring mid-level semantic knowledge (such as attribute) which is not sensitive to specific objects of interest.
We formulate a new Federated Zero-Shot Learning (FZSL) paradigm to learn mid-level semantic knowledge at multiple local clients.
To improve model discriminative ability, we propose to explore semantic knowledge augmentation from external knowledge.
arXiv Detail & Related papers (2022-08-29T10:05:49Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - CDKT-FL: Cross-Device Knowledge Transfer using Proxy Dataset in Federated Learning [27.84845136697669]
We develop a novel knowledge distillation-based approach to study the extent of knowledge transfer between the global model and local models.
We show the proposed method achieves significant speedups and high personalized performance of local models.
arXiv Detail & Related papers (2022-04-04T14:49:19Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.