Would I Lie To You? Inference Time Alignment of Language Models using Direct Preference Heads
- URL: http://arxiv.org/abs/2405.20053v1
- Date: Thu, 30 May 2024 13:38:52 GMT
- Title: Would I Lie To You? Inference Time Alignment of Language Models using Direct Preference Heads
- Authors: Avelina Asada Hadji-Kyriacou, Ognjen Arandjelovic,
- Abstract summary: We introduce Direct Preference Heads (DPH), a fine-tuning framework that enables LMs to learn human preference signals through an auxiliary reward head without directly affecting the output distribution of the language modeling head.
We evaluate our models on GLUE, RACE, and the GPT4All evaluation suite and demonstrate that our method produces models which achieve higher scores than those fine-tuned with Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO) alone.
- Score: 11.254305578659002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained Language Models (LMs) exhibit strong zero-shot and in-context learning capabilities; however, their behaviors are often difficult to control. By utilizing Reinforcement Learning from Human Feedback (RLHF), it is possible to fine-tune unsupervised LMs to follow instructions and produce outputs that reflect human preferences. Despite its benefits, RLHF has been shown to potentially harm a language model's reasoning capabilities and introduce artifacts such as hallucinations where the model may fabricate facts. To address this issue we introduce Direct Preference Heads (DPH), a fine-tuning framework that enables LMs to learn human preference signals through an auxiliary reward head without directly affecting the output distribution of the language modeling head. We perform a theoretical analysis of our objective function and find strong ties to Conservative Direct Preference Optimization (cDPO). Finally we evaluate our models on GLUE, RACE, and the GPT4All evaluation suite and demonstrate that our method produces models which achieve higher scores than those fine-tuned with Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO) alone.
Related papers
- Self-Training with Direct Preference Optimization Improves Chain-of-Thought Reasoning [5.487210426671288]
In this work, we demonstrate that the reasoning abilities of small-scale LMs can be enhanced through self-training.
We also show that the conventional self-training can be further augmented by a preference learning algorithm called Direct Preference Optimization.
arXiv Detail & Related papers (2024-07-25T17:59:16Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to boost models' alignment with human preference.
We demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models.
We shed light on the essence of ExPO amplifying the reward signal learned during alignment training.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.