VAAD: Visual Attention Analysis Dashboard applied to e-Learning
- URL: http://arxiv.org/abs/2405.20091v4
- Date: Mon, 2 Sep 2024 07:15:02 GMT
- Title: VAAD: Visual Attention Analysis Dashboard applied to e-Learning
- Authors: Miriam Navarro, Álvaro Becerra, Roberto Daza, Ruth Cobos, Aythami Morales, Julian Fierrez,
- Abstract summary: The tool is named VAAD, an acronym for Visual Attention Analysis Dashboard.
VAAD holds the potential to offer valuable insights into online learning behaviors from both descriptive and predictive perspectives.
- Score: 12.849976246445646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present an approach in the Multimodal Learning Analytics field. Within this approach, we have developed a tool to visualize and analyze eye movement data collected during learning sessions in online courses. The tool is named VAAD, an acronym for Visual Attention Analysis Dashboard. These eye movement data have been gathered using an eye-tracker and subsequently processed and visualized for interpretation. The purpose of the tool is to conduct a descriptive analysis of the data by facilitating its visualization, enabling the identification of differences and learning patterns among various learner populations. Additionally, it integrates a predictive module capable of anticipating learner activities during a learning session. Consequently, VAAD holds the potential to offer valuable insights into online learning behaviors from both descriptive and predictive perspectives.
Related papers
- Towards Interpreting Visual Information Processing in Vision-Language Models [24.51408101801313]
Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images.
We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM.
arXiv Detail & Related papers (2024-10-09T17:55:02Z) - VISTA: A Visual and Textual Attention Dataset for Interpreting Multimodal Models [2.0718016474717196]
integrated Vision and Language Models (VLMs) are frequently regarded as black boxes within the machine learning research community.
We present an image-text aligned human visual attention dataset that maps specific associations between image regions and corresponding text segments.
We then compare the internal heatmaps generated by VL models with this dataset, allowing us to analyze and better understand the model's decision-making process.
arXiv Detail & Related papers (2024-10-06T20:11:53Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
We take a closer look into existing self-supervised methods of speech from an information-theoretic perspective.
We use linear probes to estimate the mutual information between the target information and learned representations.
We explore the potential of evaluating representations in a self-supervised fashion, where we estimate the mutual information between different parts of the data without using any labels.
arXiv Detail & Related papers (2024-01-16T21:13:22Z) - ANALYTiC: Understanding Decision Boundaries and Dimensionality Reduction
in Machine Learning [0.0]
ANALYTiC uses active learning to infer semantic annotations from the trajectories by learning from sets of labeled data.
This study serves as a stepping-stone towards the broader integration of machine learning and visual methods in context of movement data analysis.
arXiv Detail & Related papers (2023-12-29T16:49:30Z) - SeeBel: Seeing is Believing [0.9790236766474201]
We propose three visualizations that enable users to compare dataset statistics and AI performance for segmenting all images.
Our project tries to further increase the interpretability of the trained AI model for segmentation by visualizing its image attention weights.
We propose to conduct surveys on real users to study the efficacy of our visualization tool in computer vision and AI domain.
arXiv Detail & Related papers (2023-12-18T05:11:00Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Learning Transferable Pedestrian Representation from Multimodal
Information Supervision [174.5150760804929]
VAL-PAT is a novel framework that learns transferable representations to enhance various pedestrian analysis tasks with multimodal information.
We first perform pre-training on LUPerson-TA dataset, where each image contains text and attribute annotations.
We then transfer the learned representations to various downstream tasks, including person reID, person attribute recognition and text-based person search.
arXiv Detail & Related papers (2023-04-12T01:20:58Z) - Vision-Language Models for Vision Tasks: A Survey [62.543250338410836]
Vision-Language Models (VLMs) learn rich vision-language correlation from web-scale image-text pairs.
This paper provides a systematic review of visual language models for various visual recognition tasks.
arXiv Detail & Related papers (2023-04-03T02:17:05Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
Machine learning is a promising approach to visualization recommendation due to its high scalability and representational power.
Our research project aims to address training bias in machine learning visualization recommendation systems by identifying trends in the training data through statistical analysis.
arXiv Detail & Related papers (2022-03-09T18:36:46Z) - An Interactive Visualization Tool for Understanding Active Learning [12.345164513513671]
We present an interactive visualization tool to elucidate the training process of active learning.
The tool enables one to select a sample of interesting data points, view how their prediction values change at different querying stages, and thus better understand when and how active learning works.
arXiv Detail & Related papers (2021-11-09T03:33:26Z) - Crop-Transform-Paste: Self-Supervised Learning for Visual Tracking [137.26381337333552]
In this work, we develop the Crop-Transform-Paste operation, which is able to synthesize sufficient training data.
Since the object state is known in all synthesized data, existing deep trackers can be trained in routine ways without human annotation.
arXiv Detail & Related papers (2021-06-21T07:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.