Occam Gradient Descent
- URL: http://arxiv.org/abs/2405.20194v3
- Date: Wed, 17 Jul 2024 14:35:54 GMT
- Title: Occam Gradient Descent
- Authors: B. N. Kausik,
- Abstract summary: Occam Gradient Descent is an algorithm that reduces model size and gradient descent on model weights to minimize fitting error.
Our algorithm is effective in outperforming traditional gradient descent with or without post-train pruning in loss, compute and model size.
We find that neural networks trained with Occam Gradient Descent outperform neural networks trained with gradient descent, as well as Random Forests, in both loss and model size.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning neural network models must be large enough to adapt to their problem domain, while small enough to avoid overfitting training data during gradient descent. To balance these competing demands, overprovisioned deep learning models such as transformers are trained for a single epoch on large data sets, and hence inefficient with both computing resources and training data. In response to these inefficiencies, we exploit learning theory to derive Occam Gradient Descent, an algorithm that interleaves adaptive reduction of model size to minimize generalization error, with gradient descent on model weights to minimize fitting error. In contrast, traditional gradient descent greedily minimizes fitting error without regard to generalization error. Our algorithm simultaneously descends the space of weights and topological size of any neural network without modification, and is effective in our image classification experiments in outperforming traditional gradient descent with or without post-train pruning in loss, compute and model size. Furthermore, applying our algorithm to tabular data classification we find that across a range of data sets, neural networks trained with Occam Gradient Descent outperform neural networks trained with gradient descent, as well as Random Forests, in both loss and model size.
Related papers
- Gradient Rewiring for Editable Graph Neural Network Training [84.77778876113099]
underlineGradient underlineRewiring method for underlineEditable graph neural network training, named textbfGRE.
We propose a simple yet effective underlineGradient underlineRewiring method for underlineEditable graph neural network training, named textbfGRE.
arXiv Detail & Related papers (2024-10-21T01:01:50Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Scaling Private Deep Learning with Low-Rank and Sparse Gradients [5.14780936727027]
We propose a framework that exploits the low-rank and sparse structure of neural networks to reduce the dimension of gradient updates.
A novel strategy is utilized to sparsify the gradients, resulting in low-dimensional, less noisy updates.
Empirical evaluation on natural language processing and computer vision tasks shows that our method outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2022-07-06T14:09:47Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches.
It is still unclear why randomly gradient descent algorithms reach their limits.
arXiv Detail & Related papers (2021-02-23T18:17:47Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.