Large Language Models Can Self-Improve At Web Agent Tasks
- URL: http://arxiv.org/abs/2405.20309v1
- Date: Thu, 30 May 2024 17:52:36 GMT
- Title: Large Language Models Can Self-Improve At Web Agent Tasks
- Authors: Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris Callison-Burch, Sepp Hochreiter,
- Abstract summary: Large language models (LLMs) have recently demonstrated some capability to navigate novel environments as agents in a zero-shot or few-shot fashion.
We explore the extent to which LLMs can self-improve their performance as agents in long-horizon tasks in a complex environment using the WebArena benchmark.
We achieve a 31% improvement in task completion rate over the base model on the WebArena benchmark through a self-improvement procedure.
- Score: 37.17001438055515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training models to act as agents that can effectively navigate and perform actions in a complex environment, such as a web browser, has typically been challenging due to lack of training data. Large language models (LLMs) have recently demonstrated some capability to navigate novel environments as agents in a zero-shot or few-shot fashion, purely guided by natural language instructions as prompts. Recent research has also demonstrated LLMs have the capability to exceed their base performance through self-improvement, i.e. fine-tuning on data generated by the model itself. In this work, we explore the extent to which LLMs can self-improve their performance as agents in long-horizon tasks in a complex environment using the WebArena benchmark. In WebArena, an agent must autonomously navigate and perform actions on web pages to achieve a specified objective. We explore fine-tuning on three distinct synthetic training data mixtures and achieve a 31\% improvement in task completion rate over the base model on the WebArena benchmark through a self-improvement procedure. We additionally contribute novel evaluation metrics for assessing the performance, robustness, capabilities, and quality of trajectories of our fine-tuned agent models to a greater degree than simple, aggregate-level benchmark scores currently used to measure self-improvement.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Web Agents with World Models: Learning and Leveraging Environment Dynamics in Web Navigation [25.26545170310844]
We present a World-model-augmented (WMA) web agent, which simulates the outcomes of its actions for better decision-making.
Experiments on WebArena and Mind2Web show that our world models improve agents' policy selection without training.
arXiv Detail & Related papers (2024-10-17T05:37:00Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning.
Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities.
We propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions.
arXiv Detail & Related papers (2024-08-13T20:52:13Z) - AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks? [50.36826943689364]
We study whether language agents can perform realistic and time-consuming tasks on the web.
We introduce AssistantBench, a new benchmark consisting of 214 realistic tasks that can be automatically evaluated.
We find that AssistantBench exposes the limitations of current systems, including language models and retrieval-augmented language models.
arXiv Detail & Related papers (2024-07-22T15:18:45Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - LASER: LLM Agent with State-Space Exploration for Web Navigation [57.802977310392755]
Large language models (LLMs) have been successfully adapted for interactive decision-making tasks like web navigation.
Previous methods implicitly assume a forward-only execution mode for the model, where they only provide oracle trajectories as in-context examples.
We propose to model the interactive task as state space exploration, where the LLM agent transitions among a pre-defined set of states by performing actions to complete the task.
arXiv Detail & Related papers (2023-09-15T05:44:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.