Can No-Reference Quality-Assessment Methods Serve as Perceptual Losses for Super-Resolution?
- URL: http://arxiv.org/abs/2405.20392v1
- Date: Thu, 30 May 2024 18:04:58 GMT
- Title: Can No-Reference Quality-Assessment Methods Serve as Perceptual Losses for Super-Resolution?
- Authors: Egor Kashkarov, Egor Chistov, Ivan Molodetskikh, Dmitriy Vatolin,
- Abstract summary: Perceptual losses play an important role in constructing deep-neural-network-based methods.
This paper investigates direct optimization of several video-superresolution models using no-reference image-quality-assessment methods as perceptual losses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Perceptual losses play an important role in constructing deep-neural-network-based methods by increasing the naturalness and realism of processed images and videos. Use of perceptual losses is often limited to LPIPS, a fullreference method. Even though deep no-reference image-qualityassessment methods are excellent at predicting human judgment, little research has examined their incorporation in loss functions. This paper investigates direct optimization of several video-superresolution models using no-reference image-quality-assessment methods as perceptual losses. Our experimental results show that straightforward optimization of these methods produce artifacts, but a special training procedure can mitigate them.
Related papers
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
Training Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores.
However, they often results in blurry images due to insufficient recovery of high-frequency details.
We propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion.
arXiv Detail & Related papers (2024-09-05T02:14:04Z) - Gradient constrained sharpness-aware prompt learning for vision-language
models [99.74832984957025]
This paper targets a novel trade-off problem in generalizable prompt learning for vision-language models (VLM)
By analyzing the loss landscapes of the state-of-the-art method and vanilla Sharpness-aware Minimization (SAM) based method, we conclude that the trade-off performance correlates to both loss value and loss sharpness.
We propose a novel SAM-based method for prompt learning, denoted as Gradient Constrained Sharpness-aware Context Optimization (GCSCoOp)
arXiv Detail & Related papers (2023-09-14T17:13:54Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Optimal Transport for Unsupervised Restoration Learning [10.955712482319457]
This work proposes a criterion for unsupervised restoration learning based on the optimal transport theory.
Experiments on synthetic and real-world data, including realistic photographic, microscopy, depth, and raw depth images, demonstrate that the proposed method even compares favorably with supervised methods.
arXiv Detail & Related papers (2021-08-04T00:54:13Z) - Feature-metric Loss for Self-supervised Learning of Depth and Egomotion [13.995413542601472]
Photometric loss is widely used for self-supervised depth and egomotion estimation.
In this work, feature-metric loss is proposed and defined on feature representation.
Comprehensive experiments and detailed analysis via visualization demonstrate the effectiveness of the proposed feature-metric loss.
arXiv Detail & Related papers (2020-07-21T05:19:07Z) - SRFlow: Learning the Super-Resolution Space with Normalizing Flow [176.07982398988747]
Super-resolution is an ill-posed problem, since it allows for multiple predictions for a given low-resolution image.
We propose SRFlow: a normalizing flow based super-resolution method capable of learning the conditional distribution of the output.
Our model is trained in a principled manner using a single loss, namely the negative log-likelihood.
arXiv Detail & Related papers (2020-06-25T06:34:04Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.