Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images
- URL: http://arxiv.org/abs/2405.20469v2
- Date: Mon, 1 Jul 2024 02:28:26 GMT
- Title: Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images
- Authors: Krishnakant Singh, Thanush Navaratnam, Jannik Holmer, Simone Schaub-Meyer, Stefan Roth,
- Abstract summary: We provide the first benchmark for three classes of synthetic clone models, namely supervised, self-supervised, and multi-modal ones.
We find that synthetic clones are much more susceptible to adversarial and real-world noise than models trained with real data.
- Score: 11.70758559522617
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A long-standing challenge in developing machine learning approaches has been the lack of high-quality labeled data. Recently, models trained with purely synthetic data, here termed synthetic clones, generated using large-scale pre-trained diffusion models have shown promising results in overcoming this annotation bottleneck. As these synthetic clone models progress, they are likely to be deployed in challenging real-world settings, yet their suitability remains understudied. Our work addresses this gap by providing the first benchmark for three classes of synthetic clone models, namely supervised, self-supervised, and multi-modal ones, across a range of robustness measures. We show that existing synthetic self-supervised and multi-modal clones are comparable to or outperform state-of-the-art real-image baselines for a range of robustness metrics - shape bias, background bias, calibration, etc. However, we also find that synthetic clones are much more susceptible to adversarial and real-world noise than models trained with real data. To address this, we find that combining both real and synthetic data further increases the robustness, and that the choice of prompt used for generating synthetic images plays an important part in the robustness of synthetic clones.
Related papers
- SAU: A Dual-Branch Network to Enhance Long-Tailed Recognition via Generative Models [9.340077455871736]
Long-tailed distributions in image recognition pose a considerable challenge due to the severe imbalance between a few dominant classes.
Recently, the use of large generative models to create synthetic data for image classification has been realized.
We propose the use of synthetic data as a complement to long-tailed datasets to eliminate the impact of data imbalance.
arXiv Detail & Related papers (2024-08-29T05:33:59Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
We first investigate the effects of synthetic data in synthetic-to-real novel view synthesis.
We propose to introduce geometry-aware contrastive learning to learn multi-view consistent features with geometric constraints.
Our method can render images with higher quality and better fine-grained details, outperforming existing generalizable novel view synthesis methods in terms of PSNR, SSIM, and LPIPS.
arXiv Detail & Related papers (2023-03-20T12:06:14Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Synthetic Data for Model Selection [2.4499092754102874]
We show that synthetic data can be beneficial for model selection.
We introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain.
arXiv Detail & Related papers (2021-05-03T09:52:03Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
We develop novel synthetic data generation and augmentation techniques for enhancing low/zero-sample learning in satellite imagery.
To test the effectiveness of synthetic imagery, we employ it in the training of detection models and our two stage model, and evaluate the resulting models on real satellite images.
arXiv Detail & Related papers (2021-01-29T22:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.